Design of a Robust Flow Cytometric Approach for Phenotypical and Functional Analysis of Human Monocyte Subsets in Health and Disease.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomolecules Pub Date : 2024-10-03 DOI:10.3390/biom14101251
Talia Ahrazoglu, Jennifer Isabel Kluczny, Patricia Kleimann, Lisa-Marie Irschfeld, Fabian Theodor Nienhaus, Florian Bönner, Norbert Gerdes, Sebastian Temme
{"title":"Design of a Robust Flow Cytometric Approach for Phenotypical and Functional Analysis of Human Monocyte Subsets in Health and Disease.","authors":"Talia Ahrazoglu, Jennifer Isabel Kluczny, Patricia Kleimann, Lisa-Marie Irschfeld, Fabian Theodor Nienhaus, Florian Bönner, Norbert Gerdes, Sebastian Temme","doi":"10.3390/biom14101251","DOIUrl":null,"url":null,"abstract":"<p><p>Human monocytes can be subdivided into phenotypically and functionally different classical, intermediate and non-classical monocytes according to the cell surface expression of CD14 and CD16. A precise identification and characterisation of monocyte subsets is necessary to unravel their role in inflammatory diseases. Here, we compared three different flow cytometric strategies (A-C) and found that strategy C, which included staining against CD11b, HLA-DR, CD14 and CD16, followed by several gating steps, most reliably identified monocyte subtypes in blood samples from healthy volunteers and from patients with stable coronary heart disease (CHD) or ST-elevation myocardial infarction (STEMI). Additionally, we established a fixation and permeabilisation protocol to enable the analysis of intracellular markers. We investigated the phagocytosis of lipid nanoparticles, the uptake of 2-NBD-glucose and the intracellular levels of CD74 and HLA-DM. This revealed that classical and intermediate monocytes from patients with STEMI showed the highest uptake of 2-NBD-glucose, whereas classical and intermediate monocytes from patients with CHD took up the largest amounts of lipid nanoparticles. Interestingly, intermediate monocytes had the highest expression level of HLA-DM. Taken together, we present a robust flow cytometric approach for the identification and functional characterisation of monocyte subtypes in healthy humans and patients with diseases.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14101251","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human monocytes can be subdivided into phenotypically and functionally different classical, intermediate and non-classical monocytes according to the cell surface expression of CD14 and CD16. A precise identification and characterisation of monocyte subsets is necessary to unravel their role in inflammatory diseases. Here, we compared three different flow cytometric strategies (A-C) and found that strategy C, which included staining against CD11b, HLA-DR, CD14 and CD16, followed by several gating steps, most reliably identified monocyte subtypes in blood samples from healthy volunteers and from patients with stable coronary heart disease (CHD) or ST-elevation myocardial infarction (STEMI). Additionally, we established a fixation and permeabilisation protocol to enable the analysis of intracellular markers. We investigated the phagocytosis of lipid nanoparticles, the uptake of 2-NBD-glucose and the intracellular levels of CD74 and HLA-DM. This revealed that classical and intermediate monocytes from patients with STEMI showed the highest uptake of 2-NBD-glucose, whereas classical and intermediate monocytes from patients with CHD took up the largest amounts of lipid nanoparticles. Interestingly, intermediate monocytes had the highest expression level of HLA-DM. Taken together, we present a robust flow cytometric approach for the identification and functional characterisation of monocyte subtypes in healthy humans and patients with diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计一种可靠的流式细胞仪方法,用于对健康和疾病中的人类单核细胞亚群进行表型和功能分析。
根据细胞表面 CD14 和 CD16 的表达,人类单核细胞可细分为表型和功能不同的经典、中间和非经典单核细胞。要揭示单核细胞在炎症性疾病中的作用,就必须对单核细胞亚群进行精确的鉴定和表征。在这里,我们比较了三种不同的流式细胞术策略(A-C),发现策略 C(包括针对 CD11b、HLA-DR、CD14 和 CD16 的染色,然后进行几个分选步骤)能最可靠地识别健康志愿者和稳定型冠心病(CHD)或 ST 段抬高型心肌梗死(STEMI)患者血液样本中的单核细胞亚型。此外,我们还制定了固定和通透方案,以便分析细胞内标记物。我们研究了脂质纳米颗粒的吞噬、2-NBD-葡萄糖的吸收以及细胞内 CD74 和 HLA-DM 的水平。结果显示,STEMI 患者的经典单核细胞和中间单核细胞对 2-NBD 葡萄糖的摄取量最高,而 CHD 患者的经典单核细胞和中间单核细胞对脂质纳米颗粒的摄取量最大。有趣的是,中间型单核细胞的 HLA-DM 表达水平最高。综上所述,我们提出了一种可靠的流式细胞仪方法,用于识别健康人和疾病患者的单核细胞亚型并确定其功能特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment. Correction: Choi et al. β-Ionone Attenuates Dexamethasone-Induced Suppression of Collagen and Hyaluronic Acid Synthesis in Human Dermal Fibroblasts. Biomolecules 2021, 11, 619. tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Cooperative Substructure and Energetics of Allosteric Regulation of the Catalytic Core of the E3 Ubiquitin Ligase Parkin by Phosphorylated Ubiquitin. Chemical Profiling of Polar Lipids and the Polyphenolic Fraction of Commercial Italian Phaseolus Seeds by UHPLC-HRMS and Biological Evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1