Different Effects of Berberine Delivery to Mitochondria on Cells Derived from the Neural Crest.

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY Biological & pharmaceutical bulletin Pub Date : 2024-01-01 DOI:10.1248/bpb.b24-00463
Ikuma Hori, Hideyoshi Harashima, Yuma Yamada
{"title":"Different Effects of Berberine Delivery to Mitochondria on Cells Derived from the Neural Crest.","authors":"Ikuma Hori, Hideyoshi Harashima, Yuma Yamada","doi":"10.1248/bpb.b24-00463","DOIUrl":null,"url":null,"abstract":"<p><p>Energy metabolism is crucial for cell polarity and pathogenesis. Mitochondria, which are essential for maintaining energy homeostasis within cells, can be targeted by drug delivery to regulate energy metabolism. However, there is a lack of research comparing how mitochondria control energy metabolism in different cell types derived from the neural crest. Understanding the effects of berberine (BBR), a compound that acts on mitochondria, on energy metabolism in neural crest-derived cells is important. This study reports how MITO-Porter, a mitochondria-targeted liposome, affects neuroblasts (Neuro2a cells) and normal human epidermal melanocytes (NHEMs) when loaded with BBR. We found that treatment with MITO-Porter containing BBR reduced mitochondrial respiration in Neuro2a cells, while it caused a slight increase in NHEMs. Additionally, the treatment shifted the ATP production pathway in Neuro2a cells to rely more on glycolysis, while in NHEMs, there was a slight decrease in the reliance on glycolysis. We also observed a significant decrease in ATP production in Neuro2a cells, while NHEMs showed a tendency to increase ATP production. Importantly, on the basis of the results of the Premix WST-1 assay, the study found that BBR treatment was not toxic to either cell type. It is important to take note of the varied effects of BBR treatment on different cell types derived from the neural crest. These findings necessitate attention when utilizing NHEMs as a cell model in the development of therapeutic strategies for neurodegenerative diseases, including the use of BBR for metabolic control.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 10","pages":"1726-1733"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00463","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy metabolism is crucial for cell polarity and pathogenesis. Mitochondria, which are essential for maintaining energy homeostasis within cells, can be targeted by drug delivery to regulate energy metabolism. However, there is a lack of research comparing how mitochondria control energy metabolism in different cell types derived from the neural crest. Understanding the effects of berberine (BBR), a compound that acts on mitochondria, on energy metabolism in neural crest-derived cells is important. This study reports how MITO-Porter, a mitochondria-targeted liposome, affects neuroblasts (Neuro2a cells) and normal human epidermal melanocytes (NHEMs) when loaded with BBR. We found that treatment with MITO-Porter containing BBR reduced mitochondrial respiration in Neuro2a cells, while it caused a slight increase in NHEMs. Additionally, the treatment shifted the ATP production pathway in Neuro2a cells to rely more on glycolysis, while in NHEMs, there was a slight decrease in the reliance on glycolysis. We also observed a significant decrease in ATP production in Neuro2a cells, while NHEMs showed a tendency to increase ATP production. Importantly, on the basis of the results of the Premix WST-1 assay, the study found that BBR treatment was not toxic to either cell type. It is important to take note of the varied effects of BBR treatment on different cell types derived from the neural crest. These findings necessitate attention when utilizing NHEMs as a cell model in the development of therapeutic strategies for neurodegenerative diseases, including the use of BBR for metabolic control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向线粒体输送小檗碱对神经干细胞的不同影响
能量代谢对细胞的极性和致病至关重要。线粒体对维持细胞内的能量平衡至关重要,可以通过靶向给药来调节能量代谢。然而,目前还缺乏对线粒体如何控制神经嵴衍生的不同细胞类型的能量代谢进行比较的研究。了解小檗碱(BBR)这种作用于线粒体的化合物对神经嵴衍生细胞能量代谢的影响非常重要。本研究报告了线粒体靶向脂质体 MITO-Porter 在负载小檗碱后如何影响神经母细胞(Neuro2a 细胞)和正常人表皮黑色素细胞(NHEMs)。我们发现,用含有 BBR 的 MITO-Porter 处理后,Neuro2a 细胞的线粒体呼吸减少,而 NHEMs 的线粒体呼吸则略有增加。此外,处理还改变了 Neuro2a 细胞的 ATP 生成途径,使其更依赖于糖酵解,而在 NHEMs 中,对糖酵解的依赖略有减少。我们还观察到,Neuro2a 细胞的 ATP 生成明显减少,而 NHEMs 的 ATP 生成则有增加的趋势。重要的是,根据 Premix WST-1 试验的结果,研究发现 BBR 处理对两种细胞类型都没有毒性。需要注意的是,BBR 处理对神经嵴衍生的不同细胞类型有不同的影响。在开发神经退行性疾病的治疗策略(包括使用 BBR 控制新陈代谢)时,利用 NHEMs 作为细胞模型时有必要注意这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.00%
发文量
247
审稿时长
2 months
期刊介绍: Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012. The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.
期刊最新文献
Epigallocatechin-3-gallate Alleviates Ethanol-Induced Endothelia Cells Injury Partly through Alteration of NF-κB Translocation and Activation of the Nrf2 Signaling Pathway. Effect of Chronic Ethanol Consumption on Exogenous Glucose Metabolism in Rats Using [1-13C], [2-13C], and [3-13C]glucose Breath Tests. Protective Effect of Pemafibrate Treatment against Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats. Comparing the Efficacy of Fosnetupitant, an NK1 Receptor Antagonist in CDDP-Based Regimens, with That of Fosaprepitant and Aprepitant: A Retrospective Observational Study. Loureirin A Promotes Cell Differentiation and Suppresses Migration and Invasion of Melanoma Cells via WNT and AKT/mTOR Signaling Pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1