Standalone single- and bi-layered human skin 3D models supported by recombinant silk feature native spatial organization.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2024-11-05 DOI:10.1088/1758-5090/ad8b72
Savvini Gkouma, Nayanika Bhalla, Solène Frapard, Alexander Jönsson, Hakan Gürbüz, Asli Aybike Dogan, Stefania Giacomello, Martin Duvfa, Patrik L Ståhl, Mona Widhe, My Hedhammar
{"title":"Standalone single- and bi-layered human skin 3D models supported by recombinant silk feature native spatial organization.","authors":"Savvini Gkouma, Nayanika Bhalla, Solène Frapard, Alexander Jönsson, Hakan Gürbüz, Asli Aybike Dogan, Stefania Giacomello, Martin Duvfa, Patrik L Ståhl, Mona Widhe, My Hedhammar","doi":"10.1088/1758-5090/ad8b72","DOIUrl":null,"url":null,"abstract":"<p><p>Physiologically relevant human skin models that include key skin cell types can be used for<i>in vitro</i>drug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant functionalized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE). Specifically, two formats of FN-silk (i.e. 3D network and nanomembrane) were evaluated. The 3D network was used as an elastic ECM-like support for the dermis, and the thin, permeable nanomembrane was used as a basement membrane to support the epidermal epithelium. Immunofluorescence microscopy and spatially resolved transcriptomics analysis demonstrated the secretion of key ECM components and the formation of microvascular-like structures. Furthermore, the epidermal layer exhibited clear stratification and the formation of a cornified layer, resulting in a tight physiologic epithelial barrier. Our findings indicate that the presented FN-silk-based skin models can be proposed as physiologically relevant standalone epidermal or dermal models, as well as a combined BSE.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad8b72","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Physiologically relevant human skin models that include key skin cell types can be used forin vitrodrug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant functionalized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE). Specifically, two formats of FN-silk (i.e. 3D network and nanomembrane) were evaluated. The 3D network was used as an elastic ECM-like support for the dermis, and the thin, permeable nanomembrane was used as a basement membrane to support the epidermal epithelium. Immunofluorescence microscopy and spatially resolved transcriptomics analysis demonstrated the secretion of key ECM components and the formation of microvascular-like structures. Furthermore, the epidermal layer exhibited clear stratification and the formation of a cornified layer, resulting in a tight physiologic epithelial barrier. Our findings indicate that the presented FN-silk-based skin models can be proposed as physiologically relevant standalone epidermal or dermal models, as well as a combined BSE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由重组丝支持的独立单层和双层人体皮肤三维模型具有原生空间组织特征。
包含关键皮肤细胞类型的生理学相关人体皮肤模型可用于体外药物测试、皮肤病理学研究或临床应用(如皮肤移植)。然而,这种模型仍然没有黄金标准。我们研究了重组功能醛化蜘蛛丝蛋白(FN-silk)在构建真皮、表皮和双层皮肤等效物(BSE)方面的潜力。具体而言,对两种形式的 FN-蚕丝(即三维网络和纳米膜)进行了评估。三维网络被用作真皮的弹性 ECM 类支撑物,而薄而透气的纳米膜则被用作支撑表皮上皮的基底膜。免疫荧光显微镜和空间分辨转录组学分析表明,表皮层分泌了关键的 ECM 成分,并形成了类似微血管的结构。此外,表皮层表现出明显的分层和角化层的形成,从而形成了严密的生理性上皮屏障。我们的研究结果表明,所展示的基于 FN-蚕丝的皮肤模型可作为与生理相关的独立表皮或真皮模型,以及组合 BSE 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
Automated production of nerve repair constructs containing endothelial cell tube-like structures. Fabrication of endothelialized capillary-like microchannel networks using sacrificial thermoresponsive microfibers. Bioprinting a resilient and transparent cornea stroma equivalent: harnessing dual crosslinking strategy with decellularized cornea matrix and silk fibroin hybrid. Narrative review of proximal tubular epithelial cellin-vitroco-culture models. Novel in situ and rapid self-gelation recombinant collagen-like protein hydrogel for wound regeneration: mediated by metal coordination crosslinking and reinforced by electro-oxidized tea polyphenols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1