{"title":"Efficient Neural Decoding Based on Multimodal Training.","authors":"Yun Wang","doi":"10.3390/brainsci14100988","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Neural decoding methods are often limited by the performance of brain encoders, which map complex brain signals into a latent representation space of perception information. These brain encoders are constrained by the limited amount of paired brain and stimuli data available for training, making it challenging to learn rich neural representations.</p><p><strong>Methods: </strong>To address this limitation, we present a novel multimodal training approach using paired image and functional magnetic resonance imaging (fMRI) data to establish a brain masked autoencoder that learns the interactions between images and brain activities. Subsequently, we employ a diffusion model conditioned on brain data to decode realistic images.</p><p><strong>Results: </strong>Our method achieves high-quality decoding results in semantic contents and low-level visual attributes, outperforming previous methods both qualitatively and quantitatively, while maintaining computational efficiency. Additionally, our method is applied to decode artificial patterns across region of interests (ROIs) to explore their functional properties. We not only validate existing knowledge concerning ROIs but also unveil new insights, such as the synergy between early visual cortex and higher-level scene ROIs, as well as the competition within the higher-level scene ROIs.</p><p><strong>Conclusions: </strong>These findings provide valuable insights for future directions in the field of neural decoding.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"14 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci14100988","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Neural decoding methods are often limited by the performance of brain encoders, which map complex brain signals into a latent representation space of perception information. These brain encoders are constrained by the limited amount of paired brain and stimuli data available for training, making it challenging to learn rich neural representations.
Methods: To address this limitation, we present a novel multimodal training approach using paired image and functional magnetic resonance imaging (fMRI) data to establish a brain masked autoencoder that learns the interactions between images and brain activities. Subsequently, we employ a diffusion model conditioned on brain data to decode realistic images.
Results: Our method achieves high-quality decoding results in semantic contents and low-level visual attributes, outperforming previous methods both qualitatively and quantitatively, while maintaining computational efficiency. Additionally, our method is applied to decode artificial patterns across region of interests (ROIs) to explore their functional properties. We not only validate existing knowledge concerning ROIs but also unveil new insights, such as the synergy between early visual cortex and higher-level scene ROIs, as well as the competition within the higher-level scene ROIs.
Conclusions: These findings provide valuable insights for future directions in the field of neural decoding.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.