Shih-Chiao Tseng, Sharon Dunnivan-Mitchell, Dana Cherry, Shuo-Hsiu Chang
{"title":"Transcranial Direct Current Stimulation for Improving Balance in Healthy Older Adults and Older Adults with Stroke: A Scoping Review.","authors":"Shih-Chiao Tseng, Sharon Dunnivan-Mitchell, Dana Cherry, Shuo-Hsiu Chang","doi":"10.3390/brainsci14101021","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Age-related decline in balance and postural control is common in healthy elders and is escalated in aging adults with stroke. Transcranial direct current stimulation (tDCS) has emerged as one of the promising brain stimulations adjoining therapeutic exercise to enhance the recovery of balance and motor functions in persons with and without neurological disorders. This review aims to summarize and compare the available evidence of the tDCS on improving balance in the older adults without neurological disorders and the older adults with stroke. <b>Methods</b>: The Ovid (Medline) database was searched from its inception through to 06/15/2024 for randomized controlled trials investigating tDCS for improving balance in older adults with and without stroke. <b>Results</b>: Overall, 20 appropriate studies (including 271 stroke subjects and 259 healthy older adults) were found. The data indicate mixed results of tDCS for improving balance in older adults with and without stroke. <b>Conclusions</b>: Based on current research evidence, we have not found a specific tDCS protocol that is more effective than other tDCS protocols for improving balance and postural control in healthy older adults and older adults with stroke. Further research should explore the ideal tDCS approach, possibly in conjunction with standard interventions, to optimize postural control and balance in healthy older adults and older adults with stroke.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"14 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci14101021","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Age-related decline in balance and postural control is common in healthy elders and is escalated in aging adults with stroke. Transcranial direct current stimulation (tDCS) has emerged as one of the promising brain stimulations adjoining therapeutic exercise to enhance the recovery of balance and motor functions in persons with and without neurological disorders. This review aims to summarize and compare the available evidence of the tDCS on improving balance in the older adults without neurological disorders and the older adults with stroke. Methods: The Ovid (Medline) database was searched from its inception through to 06/15/2024 for randomized controlled trials investigating tDCS for improving balance in older adults with and without stroke. Results: Overall, 20 appropriate studies (including 271 stroke subjects and 259 healthy older adults) were found. The data indicate mixed results of tDCS for improving balance in older adults with and without stroke. Conclusions: Based on current research evidence, we have not found a specific tDCS protocol that is more effective than other tDCS protocols for improving balance and postural control in healthy older adults and older adults with stroke. Further research should explore the ideal tDCS approach, possibly in conjunction with standard interventions, to optimize postural control and balance in healthy older adults and older adults with stroke.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.