Musyyab Yousufi, Robertas Damaševičius, Rytis Maskeliūnas
{"title":"Multimodal Fusion of EEG and Audio Spectrogram for Major Depressive Disorder Recognition Using Modified DenseNet121.","authors":"Musyyab Yousufi, Robertas Damaševičius, Rytis Maskeliūnas","doi":"10.3390/brainsci14101018","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>This study investigates the classification of Major Depressive Disorder (MDD) using electroencephalography (EEG) Short-Time Fourier-Transform (STFT) spectrograms and audio Mel-spectrogram data of 52 subjects. The objective is to develop a multimodal classification model that integrates audio and EEG data to accurately identify depressive tendencies.</p><p><strong>Methods: </strong>We utilized the Multimodal open dataset for Mental Disorder Analysis (MODMA) and trained a pre-trained Densenet121 model using transfer learning. Features from both the EEG and audio modalities were extracted and concatenated before being passed through the final classification layer. Additionally, an ablation study was conducted on both datasets separately.</p><p><strong>Results: </strong>The proposed multimodal classification model demonstrated superior performance compared to existing methods, achieving an Accuracy of 97.53%, Precision of 98.20%, F1 Score of 97.76%, and Recall of 97.32%. A confusion matrix was also used to evaluate the model's effectiveness.</p><p><strong>Conclusions: </strong>The paper presents a robust multimodal classification approach that outperforms state-of-the-art methods with potential application in clinical diagnostics for depression assessment.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"14 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci14101018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: This study investigates the classification of Major Depressive Disorder (MDD) using electroencephalography (EEG) Short-Time Fourier-Transform (STFT) spectrograms and audio Mel-spectrogram data of 52 subjects. The objective is to develop a multimodal classification model that integrates audio and EEG data to accurately identify depressive tendencies.
Methods: We utilized the Multimodal open dataset for Mental Disorder Analysis (MODMA) and trained a pre-trained Densenet121 model using transfer learning. Features from both the EEG and audio modalities were extracted and concatenated before being passed through the final classification layer. Additionally, an ablation study was conducted on both datasets separately.
Results: The proposed multimodal classification model demonstrated superior performance compared to existing methods, achieving an Accuracy of 97.53%, Precision of 98.20%, F1 Score of 97.76%, and Recall of 97.32%. A confusion matrix was also used to evaluate the model's effectiveness.
Conclusions: The paper presents a robust multimodal classification approach that outperforms state-of-the-art methods with potential application in clinical diagnostics for depression assessment.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.