GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation.

IF 6 3区 医学 Q1 CELL BIOLOGY Cancer & Metabolism Pub Date : 2024-10-26 DOI:10.1186/s40170-024-00361-3
Dan Wang, Wai Kit Chu, Jason Cheuk Sing Yam, Chi Pui Pang, Yun Chung Leung, Alisa Sau Wun Shum, Sun-On Chan
{"title":"GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation.","authors":"Dan Wang, Wai Kit Chu, Jason Cheuk Sing Yam, Chi Pui Pang, Yun Chung Leung, Alisa Sau Wun Shum, Sun-On Chan","doi":"10.1186/s40170-024-00361-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Arginine deprivation was previously shown to inhibit retinoblastoma cell proliferation and induce cell death in vitro. However, the mechanisms by which retinoblastoma cells respond to arginine deprivation remain to be elucidated.</p><p><strong>Methods: </strong>The human-derived retinoblastoma cell lines Y79 and WERI-Rb-1 were subjected to arginine depletion, and the effects on inhibiting cell growth and survival were evaluated. This study investigated potential mechanisms, including autophagy, cell cycle arrest and apoptosis. Moreover, the roles of the general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways in these processes were examined.</p><p><strong>Results: </strong>We demonstrated that arginine deprivation effectively inhibited the growth of retinoblastoma cells in vitro. This treatment caused an increase in the autophagic response. Additionally, prolonged arginine deprivation induced G2 cell cycle arrest and was accompanied by an increase in early apoptotic cells. Importantly, arginine depletion also induced the activation of GCN2 and the inhibition of mTOR signaling. We also discovered that the activation of SLC7A11 was regulated by GCN2 upon arginine deprivation. Knockdown of SLC7A11 rendered retinoblastoma cells partially resistant to arginine deprivation. Furthermore, we found that knockdown of GCN2 led to a decrease in the autophagic response in WERI-Rb-1 cells and arrested more cells in S phase, which was accompanied by fewer apoptotic cells. Moreover, knockdown of GCN2 induced the constant expression of ATF4 and the phosphorylation of 70S6K and 4E-BP1 regardless of arginine deprivation.</p><p><strong>Conclusions: </strong>Collectively, our findings suggest that the GCN2‒SLC7A11 axis regulates cell growth and survival upon arginine deprivation through coordinating autophagy, cell cycle arrest, and apoptosis in retinoblastoma cells. This work paves the way for the development of a novel treatment for retinoblastoma.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-024-00361-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Arginine deprivation was previously shown to inhibit retinoblastoma cell proliferation and induce cell death in vitro. However, the mechanisms by which retinoblastoma cells respond to arginine deprivation remain to be elucidated.

Methods: The human-derived retinoblastoma cell lines Y79 and WERI-Rb-1 were subjected to arginine depletion, and the effects on inhibiting cell growth and survival were evaluated. This study investigated potential mechanisms, including autophagy, cell cycle arrest and apoptosis. Moreover, the roles of the general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways in these processes were examined.

Results: We demonstrated that arginine deprivation effectively inhibited the growth of retinoblastoma cells in vitro. This treatment caused an increase in the autophagic response. Additionally, prolonged arginine deprivation induced G2 cell cycle arrest and was accompanied by an increase in early apoptotic cells. Importantly, arginine depletion also induced the activation of GCN2 and the inhibition of mTOR signaling. We also discovered that the activation of SLC7A11 was regulated by GCN2 upon arginine deprivation. Knockdown of SLC7A11 rendered retinoblastoma cells partially resistant to arginine deprivation. Furthermore, we found that knockdown of GCN2 led to a decrease in the autophagic response in WERI-Rb-1 cells and arrested more cells in S phase, which was accompanied by fewer apoptotic cells. Moreover, knockdown of GCN2 induced the constant expression of ATF4 and the phosphorylation of 70S6K and 4E-BP1 regardless of arginine deprivation.

Conclusions: Collectively, our findings suggest that the GCN2‒SLC7A11 axis regulates cell growth and survival upon arginine deprivation through coordinating autophagy, cell cycle arrest, and apoptosis in retinoblastoma cells. This work paves the way for the development of a novel treatment for retinoblastoma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GCN2-SLC7A11轴协调自噬、细胞周期和细胞凋亡,并在精氨酸缺乏时调节视网膜母细胞瘤的细胞生长。
背景:先前的研究表明,精氨酸剥夺可抑制视网膜母细胞瘤细胞增殖并诱导体外细胞死亡。然而,视网膜母细胞瘤细胞对精氨酸剥夺的反应机制仍有待阐明:方法:对来源于人类的视网膜母细胞瘤细胞株 Y79 和 WERI-Rb-1 进行精氨酸缺失,并评估其对抑制细胞生长和存活的影响。这项研究调查了潜在的机制,包括自噬、细胞周期停滞和细胞凋亡。此外,还研究了一般控制非去极化 2(GCN2)和雷帕霉素复合体 1(mTORC1)信号通路在这些过程中的作用:结果:我们证实,精氨酸剥夺能有效抑制视网膜母细胞瘤细胞在体外的生长。结果:我们证明了精氨酸剥夺能有效抑制视网膜母细胞瘤细胞在体外的生长。此外,长时间的精氨酸缺乏会诱导 G2 细胞周期停滞,并伴随着早期凋亡细胞的增加。重要的是,精氨酸缺失还诱导了 GCN2 的激活和 mTOR 信号转导的抑制。我们还发现,精氨酸缺乏时,SLC7A11 的活化受 GCN2 的调控。敲除 SLC7A11 可使视网膜母细胞瘤细胞对精氨酸匮乏产生部分抵抗力。此外,我们发现敲除 GCN2 会导致 WERI-Rb-1 细胞的自噬反应减弱,更多的细胞停滞在 S 期,同时凋亡细胞减少。此外,无论精氨酸是否被剥夺,敲除 GCN2 都会诱导 ATF4 的持续表达以及 70S6K 和 4E-BP1 的磷酸化:总之,我们的研究结果表明,GCN2-SLC7A11轴通过协调视网膜母细胞瘤细胞的自噬、细胞周期停滞和细胞凋亡,在精氨酸缺乏时调节细胞的生长和存活。这项工作为开发治疗视网膜母细胞瘤的新型疗法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
1.70%
发文量
17
审稿时长
14 weeks
期刊介绍: Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.
期刊最新文献
CYP19A1 regulates chemoresistance in colorectal cancer through modulation of estrogen biosynthesis and mitochondrial function. GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation. RHOF promotes Snail1 lactylation by enhancing PKM2-mediated glycolysis to induce pancreatic cancer cell endothelial-mesenchymal transition. RNF2 promotes chondrosarcoma progression by regulating ubiquitination and degradation of CBX7. Unraveling the glycosphingolipid metabolism by leveraging transcriptome-weighted network analysis on neuroblastic tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1