The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity.

IF 3.2 3区 生物学 Q3 CELL BIOLOGY Cell and Tissue Research Pub Date : 2024-10-23 DOI:10.1007/s00441-024-03925-3
Amira Fathy Ahmed, Maha Ahmed Madi, Azza Hussein Ali, Sahar A Mokhemer
{"title":"The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity.","authors":"Amira Fathy Ahmed, Maha Ahmed Madi, Azza Hussein Ali, Sahar A Mokhemer","doi":"10.1007/s00441-024-03925-3","DOIUrl":null,"url":null,"abstract":"<p><p>Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03925-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过调节 TLR4 信号传导、细胞凋亡和神经胶质细胞活性,脂肪源性基质血管分化细胞对蓝光诱导的大鼠视网膜损伤具有改善作用。
由于过度暴露于蓝光辐射源,蓝光(BL)诱导的视网膜损伤已成为一个非常普遍的问题。本研究旨在探讨基质血管成分细胞(SVFCs)对蓝光诱导的视网膜损伤可能产生的改善作用。研究人员将 40 只雄性白化大鼠随机分为四组。对照组大鼠在12小时光照/12小时黑暗条件下饲养。SVFC 对照组大鼠作为对照组,但大鼠静脉注射一次 SVFC。BL组和BL-SVFC组大鼠均暴露于BL 2周,然后BL-SVFC组大鼠静脉注射一次SVFCs。BL暴露后,将大鼠饲养8周。对大鼠进行物理和生理研究,然后采集视网膜组织进行生化和组织学研究。BL组大鼠的身体和生理变化表明其视觉功能受到影响。生化标记物评估显示,MDA、TLR4 和 MYD88 组织水平显著升高,TAC 水平显著降低。组织学和超微结构评估显示,正常的组织学结构被破坏,视网膜色素上皮、感光细胞和神经节细胞退化。此外,还检测到 NF-κB、caspase-3 和 GFAP 免疫反应明显增加。BL-SVFC 组的身体、生理和生化指标均有明显改善。视网膜组织显示,视网膜结构和超微结构的恶化有所改善,NF-κB 和 caspase-3 免疫反应明显减少,GFAP 免疫反应明显增加。本研究认为,SVFCs 可通过抑制 TLR-4/MYD-88/NF-κB 信号转导、再生、抗氧化和抗凋亡作用来改善 BL 诱导的视网膜损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
期刊最新文献
Immunohistochemical characterization of interstitial cells and their spatial relationship to motor neurons within the mouse esophagus. CRISPR-based genetic screens in human pluripotent stem cells derived neurons and brain organoids. Enhanced cell survival in prepubertal testicular tissue cryopreserved with membrane lipids and antioxidants rich cryopreservation medium. Localization of α-smooth muscle actin in osteoblast differentiation during periodontal development. Mesonephric tubules expressing estrogen and androgen receptors remain in the rete ovarii of adult mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1