Dandan Zhao, Li Wang, Bo Zhang, Cheng Qian, Ming Zhong, Shenghong Li, Jianmin Han, Hao Peng, Wei Wang
{"title":"Targeting attack activity-driven networks.","authors":"Dandan Zhao, Li Wang, Bo Zhang, Cheng Qian, Ming Zhong, Shenghong Li, Jianmin Han, Hao Peng, Wei Wang","doi":"10.1063/5.0234562","DOIUrl":null,"url":null,"abstract":"<p><p>Real-world complex systems demonstrated temporal features, i.e., the network topology varies with time and should be described as temporal networks since the traditional static networks cannot accurately characterize. To describe the deliberate attack events in the temporal networks, we propose an activity-based targeted attack on the activity-driven network to investigate temporal networks' temporal percolation properties and resilience. Based on the node activity and network mapping framework, the giant component and temporal percolation threshold are solved according to percolation theory and generating function. The theoretical results coincide with the simulation results near the thresholds. We find that targeted attacks can affect the temporal network, while random attacks cannot. As the probability of a highly active node being deleted increases, the temporal percolation threshold increases, and the giant component increases, thus enhancing robustness. When the network's activity distribution is extremely heterogeneous, network robustness decreases consequently. These findings help us to analyze and understand real-world temporal networks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0234562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Real-world complex systems demonstrated temporal features, i.e., the network topology varies with time and should be described as temporal networks since the traditional static networks cannot accurately characterize. To describe the deliberate attack events in the temporal networks, we propose an activity-based targeted attack on the activity-driven network to investigate temporal networks' temporal percolation properties and resilience. Based on the node activity and network mapping framework, the giant component and temporal percolation threshold are solved according to percolation theory and generating function. The theoretical results coincide with the simulation results near the thresholds. We find that targeted attacks can affect the temporal network, while random attacks cannot. As the probability of a highly active node being deleted increases, the temporal percolation threshold increases, and the giant component increases, thus enhancing robustness. When the network's activity distribution is extremely heterogeneous, network robustness decreases consequently. These findings help us to analyze and understand real-world temporal networks.