{"title":"Inflammation and lipoperoxidation in mucopolysaccharidoses type II patients at diagnosis and post-hematopoietic stem cell transplantation.","authors":"Camila Aguilar Delgado, Franciele Fátima Lopes, Jéssica Lamberty Faverzani, Graziela Schmitt Ribas, Desirèe Padilha Marchetti, Carolina Fischinger Moura de Souza, Roberto Giugliani, Guilherme Baldo, Carmen Regla Vargas","doi":"10.1016/j.clinbiochem.2024.110834","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mucopolysaccharidosis type II (MPS II) is caused by deficiency of the enzyme iduronate-2-sulfatase; one possible therapy for MPS II is hematopoietic stem cell transplantation (HSCT). It is established that there is excessive production of reactive species in MPS II patients, which can trigger several processes, such as the inflammatory cascade.</p><p><strong>Objectives: </strong>Our aim was to outline an inflammatory profile and lipoperoxidation of MPS II patients for a better understanding of disease and possible benefits that HSCT can bring in these processes.</p><p><strong>Materials and methods: </strong>We investigate oxidative damage to lipids by 15-F2t-isoprostane urinary concentrations and plasma pro-and anti-inflammatory cytokine concentrations in MPS II patients at diagnosis, MPS II post-HSCT patients, and controls.</p><p><strong>Results: </strong>Interleukin (IL)-1β and IL-17a concentrations were significantly increased and a tendency toward increased IL-6 production in the diagnosis group was verified. We found significant decrease in IL-4 and increase in 15-F2t-isoprostane concentrations in the diagnosis group, while IL-1β, IL-6, IL-17a and 15-F2t-isoprostane concentrations were similar between control and post-HSCT groups.</p><p><strong>Conclusions: </strong>Our study demonstrated that MPS II patients at diagnosis are in a pro-inflammatory state, bringing a novel result showing increased production of IL-17a, an osteoclastogenic cytokine, as well as demonstrating that these patients have oxidative damage to lipids. Furthermore, evidence suggests that HSCT can reduce inflammation and lipoperoxidation in MPS II patients.</p>","PeriodicalId":10172,"journal":{"name":"Clinical biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.clinbiochem.2024.110834","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Mucopolysaccharidosis type II (MPS II) is caused by deficiency of the enzyme iduronate-2-sulfatase; one possible therapy for MPS II is hematopoietic stem cell transplantation (HSCT). It is established that there is excessive production of reactive species in MPS II patients, which can trigger several processes, such as the inflammatory cascade.
Objectives: Our aim was to outline an inflammatory profile and lipoperoxidation of MPS II patients for a better understanding of disease and possible benefits that HSCT can bring in these processes.
Materials and methods: We investigate oxidative damage to lipids by 15-F2t-isoprostane urinary concentrations and plasma pro-and anti-inflammatory cytokine concentrations in MPS II patients at diagnosis, MPS II post-HSCT patients, and controls.
Results: Interleukin (IL)-1β and IL-17a concentrations were significantly increased and a tendency toward increased IL-6 production in the diagnosis group was verified. We found significant decrease in IL-4 and increase in 15-F2t-isoprostane concentrations in the diagnosis group, while IL-1β, IL-6, IL-17a and 15-F2t-isoprostane concentrations were similar between control and post-HSCT groups.
Conclusions: Our study demonstrated that MPS II patients at diagnosis are in a pro-inflammatory state, bringing a novel result showing increased production of IL-17a, an osteoclastogenic cytokine, as well as demonstrating that these patients have oxidative damage to lipids. Furthermore, evidence suggests that HSCT can reduce inflammation and lipoperoxidation in MPS II patients.
期刊介绍:
Clinical Biochemistry publishes articles relating to clinical chemistry, molecular biology and genetics, therapeutic drug monitoring and toxicology, laboratory immunology and laboratory medicine in general, with the focus on analytical and clinical investigation of laboratory tests in humans used for diagnosis, prognosis, treatment and therapy, and monitoring of disease.