Graph masked self-distillation learning for prediction of mutation impact on protein–protein interactions

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2024-10-26 DOI:10.1038/s42003-024-07066-9
Yuan Zhang, Mingyuan Dong, Junsheng Deng, Jiafeng Wu, Qiuye Zhao, Xieping Gao, Dapeng Xiong
{"title":"Graph masked self-distillation learning for prediction of mutation impact on protein–protein interactions","authors":"Yuan Zhang, Mingyuan Dong, Junsheng Deng, Jiafeng Wu, Qiuye Zhao, Xieping Gao, Dapeng Xiong","doi":"10.1038/s42003-024-07066-9","DOIUrl":null,"url":null,"abstract":"Assessing mutation impact on the binding affinity change (ΔΔG) of protein–protein interactions (PPIs) plays a crucial role in unraveling structural-functional intricacies of proteins and developing innovative protein designs. In this study, we present a deep learning framework, PIANO, for improved prediction of ΔΔG in PPIs. The PIANO framework leverages a graph masked self-distillation scheme for protein structural geometric representation pre-training, which effectively captures the structural context representations surrounding mutation sites, and makes predictions using a multi-branch network consisting of multiple encoders for amino acids, atoms, and protein sequences. Extensive experiments demonstrated its superior prediction performance and the capability of pre-trained encoder in capturing meaningful representations. Compared to previous methods, PIANO can be widely applied on both holo complex structures and apo monomer structures. Moreover, we illustrated the practical applicability of PIANO in highlighting pathogenic mutations and crucial proteins, and distinguishing de novo mutations in disease cases and controls in PPI systems. Overall, PIANO offers a powerful deep learning tool, which may provide valuable insights into the study of drug design, therapeutic intervention, and protein engineering. PIANO: a deep learning framework providing a powerful tool and potentially unforeseen avenues for the prediction of mutation impact on the binding affinity changes of protein–protein interactions","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07066-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing mutation impact on the binding affinity change (ΔΔG) of protein–protein interactions (PPIs) plays a crucial role in unraveling structural-functional intricacies of proteins and developing innovative protein designs. In this study, we present a deep learning framework, PIANO, for improved prediction of ΔΔG in PPIs. The PIANO framework leverages a graph masked self-distillation scheme for protein structural geometric representation pre-training, which effectively captures the structural context representations surrounding mutation sites, and makes predictions using a multi-branch network consisting of multiple encoders for amino acids, atoms, and protein sequences. Extensive experiments demonstrated its superior prediction performance and the capability of pre-trained encoder in capturing meaningful representations. Compared to previous methods, PIANO can be widely applied on both holo complex structures and apo monomer structures. Moreover, we illustrated the practical applicability of PIANO in highlighting pathogenic mutations and crucial proteins, and distinguishing de novo mutations in disease cases and controls in PPI systems. Overall, PIANO offers a powerful deep learning tool, which may provide valuable insights into the study of drug design, therapeutic intervention, and protein engineering. PIANO: a deep learning framework providing a powerful tool and potentially unforeseen avenues for the prediction of mutation impact on the binding affinity changes of protein–protein interactions

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测突变对蛋白质-蛋白质相互作用影响的图形掩蔽自馏学习。
评估突变对蛋白质-蛋白质相互作用(PPIs)的结合亲和力变化(ΔΔG)的影响在揭示蛋白质结构-功能的复杂性和开发创新蛋白质设计方面起着至关重要的作用。在本研究中,我们提出了一种深度学习框架 PIANO,用于改进 PPI 中 ΔΔG 的预测。PIANO框架利用图掩蔽自馏分方案进行蛋白质结构几何表征预训练,有效捕捉突变位点周围的结构上下文表征,并利用由氨基酸、原子和蛋白质序列的多个编码器组成的多分支网络进行预测。广泛的实验证明了其卓越的预测性能和预训练编码器捕捉有意义表征的能力。与之前的方法相比,PIANO 可广泛应用于全复合物结构和单体结构。此外,我们还展示了 PIANO 在突出致病突变和关键蛋白方面的实际应用能力,以及在 PPI 系统中区分疾病病例和对照组中的新发突变的能力。总之,PIANO 提供了一种强大的深度学习工具,可为药物设计、治疗干预和蛋白质工程研究提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform. Discovery of a family of menaquinone-targeting cyclic lipodepsipeptides for multidrug-resistant Gram-positive pathogens. KLF13 promotes SLE pathogenesis by modifying chromatin accessibility of key proinflammatory cytokine genes. Mutational signature analyses in multi-child families reveal sources of age-related increases in human germline mutations. Sources of variation in the serum metabolome of female participants of the HUNT2 study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1