Ruslan Moisseyev, Alexandr Pozharskiy, Aisha Taskuzhina, Marina Khusnitdinova, Ualikhan Svanbayev, Zagipa Sapakhova, Dilyara Gritsenko
{"title":"Evaluation of <i>Rz2</i> Gene Expression in Sugar Beet Hybrids Infected with Beet Necrotic Yellow Vein Virus.","authors":"Ruslan Moisseyev, Alexandr Pozharskiy, Aisha Taskuzhina, Marina Khusnitdinova, Ualikhan Svanbayev, Zagipa Sapakhova, Dilyara Gritsenko","doi":"10.3390/cimb46100674","DOIUrl":null,"url":null,"abstract":"<p><p>Sugar beet hybrids are essential in modern agriculture due to their superior yields, disease resistance, and adaptability. This study investigates the role of the <i>Rz2</i> gene in conferring resistance to beet necrotic yellow vein virus (BNYVV) in 14 sugar beet hybrids cultivated in Kazakhstan, including local and European varieties. The <i>Rz2</i> gene, encoding a CC-NB-LRR protein, is a known resistance factor against BNYVV. Using RT-qPCR, we assessed <i>Rz2</i> expression and detected BNYVV in bait plants inoculated with virus-infested soil. Our findings identified two highly resistant varieties: the Kazakh cultivar 'Abulhair' and the French line 22b5006. Additionally, the Kazakh cultivar 'Pamyati Abugalieva' and the French hybrid 'Bunker' exhibited increased resistance, suggesting involvement of other resistance loci. Notably, the Danish hybrid 'Alando', despite resistance to rhizomania, did not effectively resist BNYVV, highlighting possible evasion of its genetic factors by local virus strains. Our results emphasize the importance of <i>Rz2</i> in resistance breeding programs and advocate for further research on additional resistance genes and the genetic variability of BNYVV in Kazakhstan. This work pioneers the molecular evaluation of BNYVV resistance in sugar beet in Kazakhstan, contributing to sustainable disease management and improved sugar beet production.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46100674","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sugar beet hybrids are essential in modern agriculture due to their superior yields, disease resistance, and adaptability. This study investigates the role of the Rz2 gene in conferring resistance to beet necrotic yellow vein virus (BNYVV) in 14 sugar beet hybrids cultivated in Kazakhstan, including local and European varieties. The Rz2 gene, encoding a CC-NB-LRR protein, is a known resistance factor against BNYVV. Using RT-qPCR, we assessed Rz2 expression and detected BNYVV in bait plants inoculated with virus-infested soil. Our findings identified two highly resistant varieties: the Kazakh cultivar 'Abulhair' and the French line 22b5006. Additionally, the Kazakh cultivar 'Pamyati Abugalieva' and the French hybrid 'Bunker' exhibited increased resistance, suggesting involvement of other resistance loci. Notably, the Danish hybrid 'Alando', despite resistance to rhizomania, did not effectively resist BNYVV, highlighting possible evasion of its genetic factors by local virus strains. Our results emphasize the importance of Rz2 in resistance breeding programs and advocate for further research on additional resistance genes and the genetic variability of BNYVV in Kazakhstan. This work pioneers the molecular evaluation of BNYVV resistance in sugar beet in Kazakhstan, contributing to sustainable disease management and improved sugar beet production.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.