Quercetin as a Modulator of PTPN22 Phosphomonoesterase Activity: A Biochemical and Computational Evaluation.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Issues in Molecular Biology Pub Date : 2024-10-03 DOI:10.3390/cimb46100662
Abdulhakeem Olarewaju Sulyman, Tafa Ndagi Akanbi Yusuf, Jamiu Olaseni Aribisala, Kamaldeen Sanni Ibrahim, Emmanuel Oladipo Ajani, Abdulfatai Temitope Ajiboye, Saheed Sabiu, Karishma Singh
{"title":"Quercetin as a Modulator of PTPN22 Phosphomonoesterase Activity: A Biochemical and Computational Evaluation.","authors":"Abdulhakeem Olarewaju Sulyman, Tafa Ndagi Akanbi Yusuf, Jamiu Olaseni Aribisala, Kamaldeen Sanni Ibrahim, Emmanuel Oladipo Ajani, Abdulfatai Temitope Ajiboye, Saheed Sabiu, Karishma Singh","doi":"10.3390/cimb46100662","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer, a group of diseases characterized by uncontrollable cell proliferation and metastasis, remains a global health challenge. This study investigates quercetin, a natural compound found in many fruits and vegetables, for its potential to inhibit the phosphomonoesterase activity of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), a key immune response regulator implicated in cancer and autoimmune diseases. We started by screening seven (7) natural compounds against the activities of PTPN22 in vitro. The initial screening identified quercetin with the highest percentage inhibition (81%) among the screened compounds when compared with ursolic acid that has 84%. After the identification of quercetin, we proceeded by investigating the effect of increasing concentrations of the compound on the activity of PTPN22. In vitro studies showed that quercetin inhibited PTPN22 with an IC<sub>50</sub> of 29.59 μM, outperforming the reference standard ursolic acid, which had an IC<sub>50</sub> of 37.19 μM. Kinetic studies indicated a non-competitive inhibition by quercetin with a Ki of 550 μM. In silico analysis supported these findings, showing quercetin's better binding affinity (ΔGbind -24.56 kcal/mol) compared to ursolic acid, attributed to its higher reactivity and electron interaction capabilities at PTPN22's binding pocket. Both quercetin and ursolic acid improved the structural stability of PTPN22 during simulations. These results suggest quercetin's potential as an anticancer agent, meriting further research. However, in vivo studies and clinical trials are necessary to fully assess its efficacy and safety, and to better understand its mechanisms of action.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46100662","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer, a group of diseases characterized by uncontrollable cell proliferation and metastasis, remains a global health challenge. This study investigates quercetin, a natural compound found in many fruits and vegetables, for its potential to inhibit the phosphomonoesterase activity of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), a key immune response regulator implicated in cancer and autoimmune diseases. We started by screening seven (7) natural compounds against the activities of PTPN22 in vitro. The initial screening identified quercetin with the highest percentage inhibition (81%) among the screened compounds when compared with ursolic acid that has 84%. After the identification of quercetin, we proceeded by investigating the effect of increasing concentrations of the compound on the activity of PTPN22. In vitro studies showed that quercetin inhibited PTPN22 with an IC50 of 29.59 μM, outperforming the reference standard ursolic acid, which had an IC50 of 37.19 μM. Kinetic studies indicated a non-competitive inhibition by quercetin with a Ki of 550 μM. In silico analysis supported these findings, showing quercetin's better binding affinity (ΔGbind -24.56 kcal/mol) compared to ursolic acid, attributed to its higher reactivity and electron interaction capabilities at PTPN22's binding pocket. Both quercetin and ursolic acid improved the structural stability of PTPN22 during simulations. These results suggest quercetin's potential as an anticancer agent, meriting further research. However, in vivo studies and clinical trials are necessary to fully assess its efficacy and safety, and to better understand its mechanisms of action.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
槲皮素作为 PTPN22 磷酸单酯酶活性的调节剂:生化和计算评估
癌症是一组以无法控制的细胞增殖和转移为特征的疾病,仍然是全球健康面临的挑战。槲皮素是一种存在于许多水果和蔬菜中的天然化合物,本研究探讨了它抑制蛋白酪氨酸磷酸酶非受体22型(PTPN22)的磷单酯酶活性的潜力。我们首先在体外筛选了七(7)种针对 PTPN22 活性的天然化合物。初步筛选发现,与熊果酸 84% 的抑制率相比,槲皮素的抑制率最高(81%)。鉴定出槲皮素后,我们接着研究了增加化合物浓度对 PTPN22 活性的影响。体外研究表明,槲皮素抑制 PTPN22 的 IC50 值为 29.59 μM,优于参考标准熊果酸,后者的 IC50 值为 37.19 μM。动力学研究表明,槲皮素具有非竞争性抑制作用,其 Ki 为 550 μM。硅学分析支持这些发现,显示槲皮素的结合亲和力(ΔGbind -24.56 kcal/mol)优于熊果酸,这归因于槲皮素在 PTPN22 的结合口袋中具有更高的反应性和电子相互作用能力。在模拟过程中,槲皮素和熊果酸都提高了 PTPN22 的结构稳定性。这些结果表明槲皮素具有抗癌潜力,值得进一步研究。不过,要全面评估其疗效和安全性,并更好地了解其作用机制,还需要进行体内研究和临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Issues in Molecular Biology
Current Issues in Molecular Biology 生物-生化研究方法
CiteScore
2.90
自引率
3.20%
发文量
380
审稿时长
>12 weeks
期刊介绍: Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.
期刊最新文献
Cloning and Identification of Common Carp (Cyprinus carpio) PI3KC3 and Its Expression in Response to CyHV-3 Infection. Combining Ability of Capsicum annuum Hybrid for Antioxidant Activities, Polyphenol Content, α-Glucosidase Inhibitory, Yield, and Yield Components. Exploring the Frontiers of Neuroinflammation: New Horizons in Research and Treatment. Exploring the Gene Expression and Plasma Protein Levels of HSP90, HSP60, and GDNF in Multiple Sclerosis Patients and Healthy Controls. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1