TRIM25, TRIM28 and TRIM59 and Their Protein Partners in Cancer Signaling Crosstalk: Potential Novel Therapeutic Targets for Cancer.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Issues in Molecular Biology Pub Date : 2024-09-25 DOI:10.3390/cimb46100638
De Chen Chiang, Beow Keat Yap
{"title":"TRIM25, TRIM28 and TRIM59 and Their Protein Partners in Cancer Signaling Crosstalk: Potential Novel Therapeutic Targets for Cancer.","authors":"De Chen Chiang, Beow Keat Yap","doi":"10.3390/cimb46100638","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant expression of TRIM proteins has been correlated with poor prognosis and metastasis in many cancers, with many TRIM proteins acting as key oncogenic factors. TRIM proteins are actively involved in many cancer signaling pathways, such as p53, Akt, NF-κB, MAPK, TGFβ, JAK/STAT, AMPK and Wnt/β-catenin. Therefore, this review attempts to summarize how three of the most studied TRIMs in recent years (i.e., TRIM25, TRIM28 and TRIM59) are involved directly and indirectly in the crosstalk between the signaling pathways. A brief overview of the key signaling pathways involved and their general cross talking is discussed. In addition, the direct interacting protein partners of these TRIM proteins are also highlighted in this review to give a picture of the potential protein-protein interaction that can be targeted for future discovery and for the development of novel therapeutics against cancer. This includes some examples of protein partners which have been proposed to be master switches to various cancer signaling pathways.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46100638","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aberrant expression of TRIM proteins has been correlated with poor prognosis and metastasis in many cancers, with many TRIM proteins acting as key oncogenic factors. TRIM proteins are actively involved in many cancer signaling pathways, such as p53, Akt, NF-κB, MAPK, TGFβ, JAK/STAT, AMPK and Wnt/β-catenin. Therefore, this review attempts to summarize how three of the most studied TRIMs in recent years (i.e., TRIM25, TRIM28 and TRIM59) are involved directly and indirectly in the crosstalk between the signaling pathways. A brief overview of the key signaling pathways involved and their general cross talking is discussed. In addition, the direct interacting protein partners of these TRIM proteins are also highlighted in this review to give a picture of the potential protein-protein interaction that can be targeted for future discovery and for the development of novel therapeutics against cancer. This includes some examples of protein partners which have been proposed to be master switches to various cancer signaling pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TRIM25、TRIM28 和 TRIM59 及其在癌症信号转导中的蛋白伙伴:癌症的潜在新治疗靶点。
TRIM 蛋白的异常表达与许多癌症的不良预后和转移有关,其中许多 TRIM 蛋白是关键的致癌因子。TRIM 蛋白积极参与许多癌症信号通路,如 p53、Akt、NF-κB、MAPK、TGFβ、JAK/STAT、AMPK 和 Wnt/β-catenin 等。因此,本综述试图总结近年来研究最多的三种 TRIMs(即 TRIM25、TRIM28 和 TRIM59)是如何直接或间接参与信号通路之间的相互协作的。本文简要概述了所涉及的主要信号通路及其一般交叉对话。此外,本综述还重点介绍了这些 TRIM 蛋白的直接相互作用蛋白伙伴,以展示潜在的蛋白-蛋白相互作用,为今后发现和开发新型抗癌疗法提供目标。这包括一些被认为是各种癌症信号通路总开关的蛋白质伙伴的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Issues in Molecular Biology
Current Issues in Molecular Biology 生物-生化研究方法
CiteScore
2.90
自引率
3.20%
发文量
380
审稿时长
>12 weeks
期刊介绍: Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.
期刊最新文献
Cloning and Identification of Common Carp (Cyprinus carpio) PI3KC3 and Its Expression in Response to CyHV-3 Infection. Combining Ability of Capsicum annuum Hybrid for Antioxidant Activities, Polyphenol Content, α-Glucosidase Inhibitory, Yield, and Yield Components. Exploring the Frontiers of Neuroinflammation: New Horizons in Research and Treatment. Exploring the Gene Expression and Plasma Protein Levels of HSP90, HSP60, and GDNF in Multiple Sclerosis Patients and Healthy Controls. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1