Ectonucleotidase inhibitors: an updated patent review (2017-2023).

IF 5.4 2区 医学 Q1 CHEMISTRY, MEDICINAL Expert Opinion on Therapeutic Patents Pub Date : 2024-11-01 Epub Date: 2024-10-30 DOI:10.1080/13543776.2024.2423023
Jamshed Iqbal, Sehrish Bano, Imtiaz Ali Khan, Jean Sévigny, Qing Huang
{"title":"Ectonucleotidase inhibitors: an updated patent review (2017-2023).","authors":"Jamshed Iqbal, Sehrish Bano, Imtiaz Ali Khan, Jean Sévigny, Qing Huang","doi":"10.1080/13543776.2024.2423023","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The main enzymes that hydrolyzes nucleotides at the cell surface are nucleoside triphosphate diphosphohydrolases (NTPDases), ecto-nucleotide pyrophosphatases/phosphodiesterases (ENPPs), alkaline phosphatases (APs) and ecto-5'- nucleotidase (e5'NT, CD73) and by regulating the concentration of nucleotides at the cell surface, these enzymes have the potential to affect various conditions such as fibrosis, cancer metastasis, pruritus, inflammation, and autoimmune diseases. Thus, they represent a prospective therapeutic target.</p><p><strong>Area covered: </strong>A number of molecules, including nucleoside/nucleotide and non-nucleoside analogues, and bicyclic compounds, have shown strong potential as ectonucleotidase inhibitors. This review covers the chemistry and clinical uses of ectonucleotidase inhibitors patented between 2017 and 2023.</p><p><strong>Expert opinion: </strong>By binding to their specific P1 and P2 receptors at the cell surface, nucleosides and nucleotides regulate a number of pathophysiological events such as inflammation, fibrosis, cancer, and autoimmune diseases. Interestingly, these nucleotides can be hydrolyzed to nucleosides by several cell surface enzymes called ectonucleotidases. The development of small molecules that modulate ectonucleotidase activity is, therefore, of therapeutic value. This review provides valuable insights into recent advancements, including combination therapy and enhanced selectivity, which are poised to shape the future of ectonucleotidase inhibition through a comprehensive analysis of patents.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1167-1176"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2024.2423023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The main enzymes that hydrolyzes nucleotides at the cell surface are nucleoside triphosphate diphosphohydrolases (NTPDases), ecto-nucleotide pyrophosphatases/phosphodiesterases (ENPPs), alkaline phosphatases (APs) and ecto-5'- nucleotidase (e5'NT, CD73) and by regulating the concentration of nucleotides at the cell surface, these enzymes have the potential to affect various conditions such as fibrosis, cancer metastasis, pruritus, inflammation, and autoimmune diseases. Thus, they represent a prospective therapeutic target.

Area covered: A number of molecules, including nucleoside/nucleotide and non-nucleoside analogues, and bicyclic compounds, have shown strong potential as ectonucleotidase inhibitors. This review covers the chemistry and clinical uses of ectonucleotidase inhibitors patented between 2017 and 2023.

Expert opinion: By binding to their specific P1 and P2 receptors at the cell surface, nucleosides and nucleotides regulate a number of pathophysiological events such as inflammation, fibrosis, cancer, and autoimmune diseases. Interestingly, these nucleotides can be hydrolyzed to nucleosides by several cell surface enzymes called ectonucleotidases. The development of small molecules that modulate ectonucleotidase activity is, therefore, of therapeutic value. This review provides valuable insights into recent advancements, including combination therapy and enhanced selectivity, which are poised to shape the future of ectonucleotidase inhibition through a comprehensive analysis of patents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外显子核苷酸酶抑制剂:最新专利综述(2017-2023 年)。
导言:细胞表面水解核苷酸的酶主要有核苷三磷酸二氢酶(NTPDases)、外切核苷酸焦磷酸酶/磷酸二酯酶(ENPPs)、碱性磷酸酶(APs)和外切-5'-核苷酸酶(e5'NT、CD73),通过调节细胞表面核苷酸的浓度,这些酶有可能影响纤维化、癌症转移、瘙痒、炎症和自身免疫性疾病等各种病症。因此,它们是一种有前景的治疗目标:一些分子,包括核苷/核苷酸和非核苷酸类似物以及双环化合物,已显示出作为外切核苷酸酶抑制剂的强大潜力。本综述涵盖2017年至2023年间获得专利的外切核苷酸酶抑制剂的化学和临床用途:核苷和核苷酸通过与细胞表面特定的 P1 和 P2 受体结合,调节一系列病理生理事件,如炎症、纤维化、癌症和自身免疫性疾病。有趣的是,这些核苷酸可被几种名为外切核苷酸酶的细胞表面酶水解为核苷。因此,开发能调节外切核苷酸酶活性的小分子具有治疗价值。本综述通过对专利的全面分析,深入探讨了包括联合疗法和增强选择性在内的最新进展,这些进展有望塑造外切核苷酸酶抑制剂的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
1.50%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature. The Editors welcome: Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area Patent Evaluations examining the aims and chemical and biological claims of individual patents Perspectives on issues relating to intellectual property The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.
期刊最新文献
Mycobacterium tuberculosis inhibitors: an updated patent review (2021-present). Urease inhibitors for the treatment of H. pylori. A patent review of UNC-51-like kinase 1/2 inhibitors (2019-present). Menin-MLL protein-protein interaction inhibitors: a patent review (2021-present). Therapeutic compounds targeting interleukin-1 receptor-associated kinase 4 (IRAK4): an updated patent review (2019 to present).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1