{"title":"Case Report: Charcot-marie-tooth disease caused by a <i>de novo MORC2</i> gene mutation - novel insights into pathogenicity and treatment.","authors":"Feng Zhu, Chengcheng Gao, Xiangxiang Zhu, Huihua Jiang, Mingchun Huang, Yuanlin Zhou","doi":"10.3389/fgene.2024.1400906","DOIUrl":null,"url":null,"abstract":"<p><p>Charcot-Marie-Tooth disease (CMT) is a hereditary peripheral neuropathy involving approximately 80 pathogenic genes. Whole-exome sequencing (WES) and confirmatory Sanger sequencing analysis was applied to identify the disease-causing mutations in a Chinese patient with lower limb weakness. We present an 18-year-old male with a 2.5-year history of progressive lower limb weakness and an unsteady gait. Upon admission, a physical examination revealed hands tremulousness, bilateral calf muscle wasting and weakness, pes cavus, and elevated serum creatine kinase (CK) levels. Electromyography demonstrated axonal neuropathy affecting both upper and lower limbs. A <i>de novo</i> heterozygous missense mutation was identified in the <i>MORC2</i> gene, NM_001303256.3: c.1199A>G, NP_001290186.1: p.Gln400Arg. Consequently, these clinical and genetic findings suggested a diagnosis of hereditary peripheral neuropathy, CMT type 2Z. Oral mecobalamin and coenzyme Q10 was initiated as subsequent treatment. Our study firstly reports the <i>MORC2</i> c.1199A>G mutation occurring <i>de novo</i>, highlighting its causal association with CMT2Z, and prompting its reclassification as likely pathogenic. Oral mecobalamin and coenzyme Q10 might be a potential treatment approach for early-stage CMT2Z. We recommend genetic testing for CMT patients to identify the genetic etiology, thereby improving clinical management and facilitating genetic counseling.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2024.1400906","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Charcot-Marie-Tooth disease (CMT) is a hereditary peripheral neuropathy involving approximately 80 pathogenic genes. Whole-exome sequencing (WES) and confirmatory Sanger sequencing analysis was applied to identify the disease-causing mutations in a Chinese patient with lower limb weakness. We present an 18-year-old male with a 2.5-year history of progressive lower limb weakness and an unsteady gait. Upon admission, a physical examination revealed hands tremulousness, bilateral calf muscle wasting and weakness, pes cavus, and elevated serum creatine kinase (CK) levels. Electromyography demonstrated axonal neuropathy affecting both upper and lower limbs. A de novo heterozygous missense mutation was identified in the MORC2 gene, NM_001303256.3: c.1199A>G, NP_001290186.1: p.Gln400Arg. Consequently, these clinical and genetic findings suggested a diagnosis of hereditary peripheral neuropathy, CMT type 2Z. Oral mecobalamin and coenzyme Q10 was initiated as subsequent treatment. Our study firstly reports the MORC2 c.1199A>G mutation occurring de novo, highlighting its causal association with CMT2Z, and prompting its reclassification as likely pathogenic. Oral mecobalamin and coenzyme Q10 might be a potential treatment approach for early-stage CMT2Z. We recommend genetic testing for CMT patients to identify the genetic etiology, thereby improving clinical management and facilitating genetic counseling.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.