Kay Anantanawat, Alexie Papanicolaou, Kelly Hill, Yalin Liao, Wei Xu
{"title":"Divergent Heat Stress Responses in <i>Bactrocera tryoni</i> and <i>Ceratitis capitata</i>.","authors":"Kay Anantanawat, Alexie Papanicolaou, Kelly Hill, Yalin Liao, Wei Xu","doi":"10.3390/insects15100759","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive Tephritid fruit flies rank among the most destructive agricultural and horticultural pests worldwide. Heat treatment is commonly employed as a post-harvest method to exterminate fruit flies in fruits or vegetables. These pest species exhibit distinct tolerance to heat treatments, suggesting that the molecular pathways affected by heat may differ among species. In this study, the Queensland fruit fly (Qfly), <i>Bactrocera tryoni</i>, was utilised as a model investigate its molecular response to heat stress through heat bioassays. RNA samples from flies before and after heat treatment were extracted and sequenced to identify genes with significant changes in expression. These findings were compared to another serious Tephritid fruit fly species, the Mediterranean fruit fly (Medfly), <i>Ceratitis capitata</i>, under similar heat treatment conditions. The analysis reveals only three common genes: heat shock protein 70 (HSP70), HSP68, and 14-3-3 zeta protein. However, despite these shared genes, their expression patterns differ between Qfly and Medfly. This suggests that these genes might play different roles in the heat responses of each species and could be regulated differently. This study presents the first evidence of differing molecular responses to heat between Qfly and Medfly, potentially linked to their varied origins, habitats, and genetic backgrounds. These findings offer new insights into Tephritid fruit fly responses to heat at the molecular level, which may help refine post-harvest strategies to control these pests in the future.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"15 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects15100759","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Invasive Tephritid fruit flies rank among the most destructive agricultural and horticultural pests worldwide. Heat treatment is commonly employed as a post-harvest method to exterminate fruit flies in fruits or vegetables. These pest species exhibit distinct tolerance to heat treatments, suggesting that the molecular pathways affected by heat may differ among species. In this study, the Queensland fruit fly (Qfly), Bactrocera tryoni, was utilised as a model investigate its molecular response to heat stress through heat bioassays. RNA samples from flies before and after heat treatment were extracted and sequenced to identify genes with significant changes in expression. These findings were compared to another serious Tephritid fruit fly species, the Mediterranean fruit fly (Medfly), Ceratitis capitata, under similar heat treatment conditions. The analysis reveals only three common genes: heat shock protein 70 (HSP70), HSP68, and 14-3-3 zeta protein. However, despite these shared genes, their expression patterns differ between Qfly and Medfly. This suggests that these genes might play different roles in the heat responses of each species and could be regulated differently. This study presents the first evidence of differing molecular responses to heat between Qfly and Medfly, potentially linked to their varied origins, habitats, and genetic backgrounds. These findings offer new insights into Tephritid fruit fly responses to heat at the molecular level, which may help refine post-harvest strategies to control these pests in the future.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.