{"title":"Mapping Species Distributions of <i>Latoia consocia</i> Walker under Climate Change Using Current Geographical Presence Data and MAXENT (CMIP 6).","authors":"Yuhan Wu, Danping Xu, Yaqin Peng, Zhihang Zhuo","doi":"10.3390/insects15100756","DOIUrl":null,"url":null,"abstract":"<p><p><i>Latoia consocia</i> Walker is an important phytophagous pest that has rapidly spread across North China in recent years, posing a severe threat to related plants. To study the impact of climatic conditions on its distribution and to predict its distribution under current and future climate conditions, the MaxEnt niche model and ArcGIS 10.8 software were used. The results showed that the MaxEnt model performs well in predicting the distribution of <i>L. consocia</i>, with an AUC value of 0.913. The annual precipitation (Bio12), the precipitation of the driest month (Bio14), the temperature annual range (Bio7), and the minimum temperature of the coldest month (Bio6) are key environmental factors affecting the potential distribution of <i>L. consocia</i>. Under current climate conditions, <i>L. consocia</i> has a highly suitable growth area of 2243 km<sup>2</sup> in China, among which Taiwan has the largest high-suitable area with a total area of 1450 km<sup>2</sup>. With climate warming, the potential habitat area for <i>L. consocia</i> shows an overall decreasing trend in future. This work provides a scientific basis for research on pest control and ecological protection. A \"graded response\" detection and early warning system, as well as prevention and control strategies, can be developed for potentially suitable areas to effectively address this pest challenge.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"15 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects15100756","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Latoia consocia Walker is an important phytophagous pest that has rapidly spread across North China in recent years, posing a severe threat to related plants. To study the impact of climatic conditions on its distribution and to predict its distribution under current and future climate conditions, the MaxEnt niche model and ArcGIS 10.8 software were used. The results showed that the MaxEnt model performs well in predicting the distribution of L. consocia, with an AUC value of 0.913. The annual precipitation (Bio12), the precipitation of the driest month (Bio14), the temperature annual range (Bio7), and the minimum temperature of the coldest month (Bio6) are key environmental factors affecting the potential distribution of L. consocia. Under current climate conditions, L. consocia has a highly suitable growth area of 2243 km2 in China, among which Taiwan has the largest high-suitable area with a total area of 1450 km2. With climate warming, the potential habitat area for L. consocia shows an overall decreasing trend in future. This work provides a scientific basis for research on pest control and ecological protection. A "graded response" detection and early warning system, as well as prevention and control strategies, can be developed for potentially suitable areas to effectively address this pest challenge.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.