Jiamin Mao, Xiaoyuan Liu, Lie Zhang, Yu Chen, Shiyu Zhou, Yujiao Liu, Jing Ye, Xiaohong Xu, Quan Zhang
{"title":"Self-Nanoemulsifying Drug Delivery System of Morin: A New Approach for Combating Acute Alcohol Intoxication.","authors":"Jiamin Mao, Xiaoyuan Liu, Lie Zhang, Yu Chen, Shiyu Zhou, Yujiao Liu, Jing Ye, Xiaohong Xu, Quan Zhang","doi":"10.2147/IJN.S472287","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Acute alcohol intoxication (AAI) is a life-threatening medical condition resulting from excessive alcohol consumption. Our research revealed the potential of morin (MOR) in treating AAI. However, MOR's effectiveness against AAI was hindered by its poor solubility in water and low bioavailability. In this study, our aim was to develop a self-nanoemulsifying drug delivery system (SNEDDS) to enhance MOR's solubility and bioavailability, evaluate its anti-AAI effects, and investigate the underlying mechanism.</p><p><strong>Methods: </strong>The composition of MOR-loaded self-nanoemulsifying drug delivery system (MOR-SNEDDS) was determined by constructing pseudo-ternary phase diagrams, and its formulation proportion was optimized using the Box-Behnken design. Following characterization of MOR-SNEDDS, we investigated its pharmacokinetics and biodistribution in healthy animals. Additionally, we assessed the anti-AAI effects and gastric mucosal protection of MOR-SNEDDS in an AAI mice model, exploring potential mechanisms.</p><p><strong>Results: </strong>After breaking down into tiny droplets, the optimized mixture of MOR-SNEDDS showed small droplet size on average, even distribution, strong stability, and permeability. Pharmacokinetic studies indicated that MOR-SNEDDS, compared to a MOR suspension, increased the area under the plasma concentration-time curve (AUC<sub>0-t</sub>) by 10.43 times. Additionally, studies on how drugs move and are distributed in the body showed that MOR-SNEDDS had an advantage in passively targeting the liver. Moreover, in a mouse model for alcohol addiction, MOR not only decreased alcohol levels by boosting the activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the stomach and liver, which counteracted the loss of righting reflex (LORR), but also reduced alcohol-induced damage to the stomach lining by lowering malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) levels. Furthermore, MOR-SNEDDS notably amplified these effects.</p><p><strong>Conclusion: </strong>MOR exhibits significant potential as a new medication for treating AAI, and utilizing MOR-SNEDDS with high oral bioavailability represents a promising new strategy in combating AAI.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"10569-10588"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495198/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S472287","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Acute alcohol intoxication (AAI) is a life-threatening medical condition resulting from excessive alcohol consumption. Our research revealed the potential of morin (MOR) in treating AAI. However, MOR's effectiveness against AAI was hindered by its poor solubility in water and low bioavailability. In this study, our aim was to develop a self-nanoemulsifying drug delivery system (SNEDDS) to enhance MOR's solubility and bioavailability, evaluate its anti-AAI effects, and investigate the underlying mechanism.
Methods: The composition of MOR-loaded self-nanoemulsifying drug delivery system (MOR-SNEDDS) was determined by constructing pseudo-ternary phase diagrams, and its formulation proportion was optimized using the Box-Behnken design. Following characterization of MOR-SNEDDS, we investigated its pharmacokinetics and biodistribution in healthy animals. Additionally, we assessed the anti-AAI effects and gastric mucosal protection of MOR-SNEDDS in an AAI mice model, exploring potential mechanisms.
Results: After breaking down into tiny droplets, the optimized mixture of MOR-SNEDDS showed small droplet size on average, even distribution, strong stability, and permeability. Pharmacokinetic studies indicated that MOR-SNEDDS, compared to a MOR suspension, increased the area under the plasma concentration-time curve (AUC0-t) by 10.43 times. Additionally, studies on how drugs move and are distributed in the body showed that MOR-SNEDDS had an advantage in passively targeting the liver. Moreover, in a mouse model for alcohol addiction, MOR not only decreased alcohol levels by boosting the activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the stomach and liver, which counteracted the loss of righting reflex (LORR), but also reduced alcohol-induced damage to the stomach lining by lowering malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) levels. Furthermore, MOR-SNEDDS notably amplified these effects.
Conclusion: MOR exhibits significant potential as a new medication for treating AAI, and utilizing MOR-SNEDDS with high oral bioavailability represents a promising new strategy in combating AAI.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.