Alleviation of LPS-induced Endothelial Injury due to GHRH Antagonist Treatment.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Peptide Research and Therapeutics Pub Date : 2024-01-01 Epub Date: 2024-10-01 DOI:10.1007/s10989-024-10653-3
Saikat Fakir, Khadeja-Tul Kubra, Mohammad Shohel Akhter, Mohammad Afaz Uddin, Nektarios Barabutis
{"title":"Alleviation of LPS-induced Endothelial Injury due to GHRH Antagonist Treatment.","authors":"Saikat Fakir, Khadeja-Tul Kubra, Mohammad Shohel Akhter, Mohammad Afaz Uddin, Nektarios Barabutis","doi":"10.1007/s10989-024-10653-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>GHRH is produced in the hypothalamus and affects various tissues beyond the pituitary, including the lungs. GHRH antagonists exert anti-inflammatory properties in several experimental models of disease, but their role inprotecting the endothelial barrier during inflammation is less understood. This study investigates the effects ofGHRHAnt on LPS-induced endothelial dysfunction.</p><p><strong>Methods: </strong>BPAEC and HMVEC-L cells were exposed to LPS to induce endothelial injury. GHRHAnt was administered eitherpre- or post-LPS treatment. Western blot analysis was used to evaluate protein expression levels. Paracellularpermeability was assessed utilizing FITC-dextran assay to evaluate endothelial barrier function.</p><p><strong>Results: </strong>GHRHAnt post-treatment significantly reduced LPS-induced MLC2 phosphorylation and cofilin activation inBPAECs. Furthermore, pretreatment with GHRHAnt enhanced barrier function and ameliorated LPS-inducedhyperpermeability in both human and bovine endothelial cells.</p><p><strong>Conclusions: </strong>GHRHAnt treatment mitigates LPS-induced endothelial barrier dysfunction. These findings suggest that GHRHAntcould serve as potential therapeutic agents towards endothelial dysfunction-related illness (e.g. sepsis).</p>","PeriodicalId":14217,"journal":{"name":"International Journal of Peptide Research and Therapeutics","volume":"30 6","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500629/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Peptide Research and Therapeutics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10989-024-10653-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: GHRH is produced in the hypothalamus and affects various tissues beyond the pituitary, including the lungs. GHRH antagonists exert anti-inflammatory properties in several experimental models of disease, but their role inprotecting the endothelial barrier during inflammation is less understood. This study investigates the effects ofGHRHAnt on LPS-induced endothelial dysfunction.

Methods: BPAEC and HMVEC-L cells were exposed to LPS to induce endothelial injury. GHRHAnt was administered eitherpre- or post-LPS treatment. Western blot analysis was used to evaluate protein expression levels. Paracellularpermeability was assessed utilizing FITC-dextran assay to evaluate endothelial barrier function.

Results: GHRHAnt post-treatment significantly reduced LPS-induced MLC2 phosphorylation and cofilin activation inBPAECs. Furthermore, pretreatment with GHRHAnt enhanced barrier function and ameliorated LPS-inducedhyperpermeability in both human and bovine endothelial cells.

Conclusions: GHRHAnt treatment mitigates LPS-induced endothelial barrier dysfunction. These findings suggest that GHRHAntcould serve as potential therapeutic agents towards endothelial dysfunction-related illness (e.g. sepsis).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GHRH 拮抗剂可缓解 LPS 诱导的内皮损伤。
背景:GHRH产生于下丘脑,影响垂体以外的各种组织,包括肺部。GHRH拮抗剂在几种疾病的实验模型中具有抗炎特性,但它们在炎症过程中保护内皮屏障的作用却鲜为人知。本研究探讨了 GHRHAnt 对 LPS 诱导的内皮功能障碍的影响:方法:将 BPAEC 和 HMVEC-L 细胞暴露于 LPS 诱导的内皮损伤。在LPS处理前或处理后给予GHRHAnt。采用 Western 印迹分析评估蛋白质表达水平。利用FITC-葡聚糖检测法评估细胞旁通透性,以评价内皮屏障功能:结果:GHRHAnt后处理可明显降低LPS诱导的MLC2磷酸化和Cofilin在BPAECs中的激活。此外,用 GHRHAnt 预处理可增强人和牛内皮细胞的屏障功能,并改善 LPS 诱导的高渗透性:结论:GHRHAnt 治疗可减轻 LPS 诱导的内皮屏障功能障碍。这些研究结果表明,GHRHAnt 可作为内皮功能障碍相关疾病(如败血症)的潜在治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
8.00%
发文量
131
审稿时长
>12 weeks
期刊介绍: The International Journal for Peptide Research & Therapeutics is an international, peer-reviewed journal focusing on issues, research, and integration of knowledge on the latest developments in peptide therapeutics. The Journal brings together in a single source the most exciting work in peptide research, including isolation, structural characterization, synthesis and biological activity of peptides, and thereby aids in the development of unifying concepts from diverse perspectives. The Journal invites substantial contributions in the following thematic areas: -New advances in peptide drug delivery systems. -Application of peptide therapeutics to specific diseases. -New advances in synthetic methods. -The development of new procedures for construction of peptide libraries and methodology for screening of such mixtures. -The use of peptides in the study of enzyme specificity and mechanism, receptor binding and antibody/antigen interactions -Applications of such techniques as chromatography, electrophoresis, NMR and X-ray crystallography, mass spectrometry.
期刊最新文献
Synthetic studies of the mutant proinsulin syndrome demonstrate correlation between folding efficiency and age of diabetes onset. Isolation of Peptide Ligands for the HIV Capsid Protein p24 by Phage-Display. Molecular Chimera in Cancer Drug Discovery: Beyond Antibody Therapy, Designing Grafted Stable Peptides Targeting Cancer. Synthetic Short Cryptic Antimicrobial Peptides as Templates for the Development of Novel Biotherapeutics Against WHO Priority Pathogen Molecular Mechanism of NL13 Peptide of Adenosyl Homocysteinase Against ER Stress through Nrf2 Signaling Cascade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1