Hepcidin expression is associated with increased γ-secretase-mediated cleavage of neogenin in the liver.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Chemistry Pub Date : 2024-10-23 DOI:10.1016/j.jbc.2024.107927
Caroline A Enns, Richard H Zhang, Shall Jue, An-Sheng Zhang
{"title":"Hepcidin expression is associated with increased γ-secretase-mediated cleavage of neogenin in the liver.","authors":"Caroline A Enns, Richard H Zhang, Shall Jue, An-Sheng Zhang","doi":"10.1016/j.jbc.2024.107927","DOIUrl":null,"url":null,"abstract":"<p><p>Neogenin (NEO1) is a ubiquitously expressed transmembrane protein. It interacts with hemojuvelin (HJV). Both NEO1 and HJV play pivotal roles in iron homeostasis by inducing hepcidin expression in the liver. Our previous studies demonstrated that this process depends on Neo1-Hjv interaction and showed that the Hjv-mediated hepcidin expression is correlated with the accumulation of a truncated and membrane-associated form of Neo1. In this study, we tested whether hepcidin expression is induced by increased γ-secretase-mediated cleavage of Neo1 in the liver. We found that Neo1 underwent cleavage of its ectodomain and intracellular domains by α- and γ-secretases, respectively, in hepatoma cells. Our in vitro studies suggest that γ-secretase is responsible for cleavage and release of the cytoplasmic domain of Neo1 in the Hjv-Neo1 complex. This process was enhanced by inhibition of α-secretase proteolysis and by co-expression with the Neo1-binding partner, Alk3. Further in vivo studies indicated that Neo1 induction of hepcidin expression required γ-secretase cleavage. Interestingly, neither predicted form of γ-secretase-cleaved Neo1 was able to induce hepcidin when separately expressed in hepatocyte-specific Neo1 knockout mice. These results imply that the function of Neo1 requires a de novo γ-secretase proteolysis. Additional studies revealed that in addition to the Hjv-binding domains, the function of Neo1 also required its C-terminal intracellular domain and the N-terminal immunoglobulin-like domains that are involved in Neo1 binding to Alk3. Together, our data support the idea that Neo1 induction of hepcidin is initiated as a full-length form and requires a de novo γ-secretase cleavage of Neo1's cytoplasmic domain.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107927","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neogenin (NEO1) is a ubiquitously expressed transmembrane protein. It interacts with hemojuvelin (HJV). Both NEO1 and HJV play pivotal roles in iron homeostasis by inducing hepcidin expression in the liver. Our previous studies demonstrated that this process depends on Neo1-Hjv interaction and showed that the Hjv-mediated hepcidin expression is correlated with the accumulation of a truncated and membrane-associated form of Neo1. In this study, we tested whether hepcidin expression is induced by increased γ-secretase-mediated cleavage of Neo1 in the liver. We found that Neo1 underwent cleavage of its ectodomain and intracellular domains by α- and γ-secretases, respectively, in hepatoma cells. Our in vitro studies suggest that γ-secretase is responsible for cleavage and release of the cytoplasmic domain of Neo1 in the Hjv-Neo1 complex. This process was enhanced by inhibition of α-secretase proteolysis and by co-expression with the Neo1-binding partner, Alk3. Further in vivo studies indicated that Neo1 induction of hepcidin expression required γ-secretase cleavage. Interestingly, neither predicted form of γ-secretase-cleaved Neo1 was able to induce hepcidin when separately expressed in hepatocyte-specific Neo1 knockout mice. These results imply that the function of Neo1 requires a de novo γ-secretase proteolysis. Additional studies revealed that in addition to the Hjv-binding domains, the function of Neo1 also required its C-terminal intracellular domain and the N-terminal immunoglobulin-like domains that are involved in Neo1 binding to Alk3. Together, our data support the idea that Neo1 induction of hepcidin is initiated as a full-length form and requires a de novo γ-secretase cleavage of Neo1's cytoplasmic domain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肝素的表达与肝脏中γ-分泌酶介导的新肝素裂解增加有关。
Neogenin(NEO1)是一种普遍表达的跨膜蛋白。它与血球素(HJV)相互作用。NEO1 和 HJV 都通过诱导肝脏中血钙素的表达在铁平衡中发挥关键作用。我们之前的研究表明,这一过程依赖于 Neo1-Hjv 的相互作用,并表明 Hjv 介导的肝磷脂素表达与 Neo1 的截短和膜相关形式的积累有关。在本研究中,我们测试了肝脏中γ-分泌酶介导的Neo1裂解增加是否会诱导肝磷脂素的表达。我们发现,在肝癌细胞中,Neo1 的外结构域和胞内结构域分别被 α 和 γ 分泌酶裂解。我们的体外研究表明,γ-分泌酶负责 Hjv-Neo1 复合物中 Neo1 胞质结构域的裂解和释放。通过抑制α-分泌酶的蛋白水解作用以及与 Neo1 结合伙伴 Alk3 共同表达,这一过程得到了加强。进一步的体内研究表明,Neo1 诱导 hepcidin 的表达需要 γ 分泌酶的裂解。有趣的是,在肝细胞特异性 Neo1 基因敲除小鼠体内单独表达时,γ-分泌酶裂解的 Neo1 预测形式都不能诱导肝磷脂素的表达。这些结果表明,Neo1的功能需要从头开始的γ-分泌酶蛋白水解。其他研究表明,除了 Hjv 结合结构域外,Neo1 的功能还需要其 C 端细胞内结构域和 N 端免疫球蛋白样结构域,这些结构域参与 Neo1 与 Alk3 的结合。总之,我们的数据支持这样一种观点,即 Neo1 诱导的肝素是以全长形式启动的,需要 Neo1 的细胞质结构域被γ-分泌酶从头裂解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
期刊最新文献
Acute inflammation upregulates FAHFAs in adipose tissue and in co-cultured adipocytes. Bidirectional transfer of a small membrane-impermeable molecule between the C. elegans intestine and germline. Duality in disease: how two amino acid substitutions at actin residue 312 result in opposing forms of cardiomyopathy. Elevated free cholesterol levels due to impaired reverse cholesterol transport are a risk factor for polymicrobial sepsis in mice. Legius Syndrome mutations in the Ras-regulator SPRED1 abolish its membrane localization and potentially cause neurodegeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1