R Colominas-Ciuró, A Kowalczewska, M Jefimow, M S Wojciechowski
{"title":"Temperature and water availability induce chronic stress responses in Zebra finch (Taeniopygia guttata).","authors":"R Colominas-Ciuró, A Kowalczewska, M Jefimow, M S Wojciechowski","doi":"10.1242/jeb.247743","DOIUrl":null,"url":null,"abstract":"<p><p>Animals initiate physiological mechanisms to re-establish homeostasis following environmental stress. To understand how bird physiology responds to abiotic stress, we quantified changes in hematological markers of chronic stress response and body condition of male zebra finches (Taeniopygia guttata) acclimated for 18 weeks to hot and cool temperatures (daytime temperature: 40°C and 23°C) with water available ad libitum or restricted during half of the active phase. Ambient temperature induced greater chronic stress than restricted water availability. While cool compared to hot temperatures induced higher numbers of heterophils and H : L ratios and declined total leucocyte counts, water restriction decreased the number of lymphocytes compared to water ad libitum. Body condition correlated with hematological parameters showing that birds with better condition had greater capacity to face environmental stress. Therefore, prolonged exposure to cool periods may result in chronic stress in zebra finches, especially, if body condition is weakened.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animals initiate physiological mechanisms to re-establish homeostasis following environmental stress. To understand how bird physiology responds to abiotic stress, we quantified changes in hematological markers of chronic stress response and body condition of male zebra finches (Taeniopygia guttata) acclimated for 18 weeks to hot and cool temperatures (daytime temperature: 40°C and 23°C) with water available ad libitum or restricted during half of the active phase. Ambient temperature induced greater chronic stress than restricted water availability. While cool compared to hot temperatures induced higher numbers of heterophils and H : L ratios and declined total leucocyte counts, water restriction decreased the number of lymphocytes compared to water ad libitum. Body condition correlated with hematological parameters showing that birds with better condition had greater capacity to face environmental stress. Therefore, prolonged exposure to cool periods may result in chronic stress in zebra finches, especially, if body condition is weakened.
动物在受到环境压力后会启动生理机制来重建体内平衡。为了了解鸟类生理如何应对非生物压力,我们量化了雄性斑马雀(Taeniopygia guttata)在高温和低温(白天温度:40°C 和 23°C)环境中适应 18 周后慢性压力反应的血液学指标和身体状况的变化。与限制供水相比,环境温度引起的慢性压力更大。与高温相比,低温诱导的异性嗜酸性粒细胞数量和 H : L 比率更高,白细胞总数减少;与自由饮水相比,限制饮水减少了淋巴细胞数量。身体状况与血液学参数相关,表明身体状况较好的鸟类面对环境压力的能力更强。因此,长期暴露在低温环境中可能会对斑马雀造成慢性应激,尤其是在体质较弱的情况下。
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.