Margaret J Couvillon, John Hainze, Connor Bizon, Lindsay E Johnson, Ian F McKellips, Benjamin E McMillan, Bradley D Ohlinger, Robert B J Ostrom, Roger Schürch
{"title":"Airborne metofluthrin, a pyrethroid repellent, does not impact foraging honey bees.","authors":"Margaret J Couvillon, John Hainze, Connor Bizon, Lindsay E Johnson, Ian F McKellips, Benjamin E McMillan, Bradley D Ohlinger, Robert B J Ostrom, Roger Schürch","doi":"10.1093/jisesa/ieae103","DOIUrl":null,"url":null,"abstract":"<p><p>Outdoor spatial mosquito repellents, such as mosquito coils or heating devices, release pyrethroid insecticides into the air to provide protection from mosquitoes within a defined area. This broadcast discharge of pyrethroids into the environment raises concern about the effect on non-target organisms. A previous study found that prallethrin discharged from a heating device did not affect honey bee (Apis mellifera L.) [Hymenoptera: Apidae] foraging or recruitment. In this second study, there was no significant difference in foraging frequency (our primary outcome), waggle dance propensity, or persistency in honey bees collecting sucrose solution between those exposed to metofluthrin from a different heating device and bees exposed to a non-metofluthrin control. One measure, waggle dance frequency, was higher in the metofluthrin treatment than the control but this outcome was likely a spurious result due to the small sample size. The small particle size of the emissions, averaging 4.43 µm, from the heated spatial repellent products, which remain airborne with little settling, may play an important role in the lack of effect found on honey bee foraging.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae103","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Outdoor spatial mosquito repellents, such as mosquito coils or heating devices, release pyrethroid insecticides into the air to provide protection from mosquitoes within a defined area. This broadcast discharge of pyrethroids into the environment raises concern about the effect on non-target organisms. A previous study found that prallethrin discharged from a heating device did not affect honey bee (Apis mellifera L.) [Hymenoptera: Apidae] foraging or recruitment. In this second study, there was no significant difference in foraging frequency (our primary outcome), waggle dance propensity, or persistency in honey bees collecting sucrose solution between those exposed to metofluthrin from a different heating device and bees exposed to a non-metofluthrin control. One measure, waggle dance frequency, was higher in the metofluthrin treatment than the control but this outcome was likely a spurious result due to the small sample size. The small particle size of the emissions, averaging 4.43 µm, from the heated spatial repellent products, which remain airborne with little settling, may play an important role in the lack of effect found on honey bee foraging.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.