Extracellular Vesicles Derived from Adipose-Derived Mesenchymal Stem Cells Alleviate Apoptosis and Oxidative Stress of Retinal Pigment Epithelial Cells Through Activation of Nrf2 Signaling Pathway.
Jin Sun Hwang, Hyun Beom Song, Geonhui Lee, Sangmoo Jeong, Dae Joong Ma
{"title":"Extracellular Vesicles Derived from Adipose-Derived Mesenchymal Stem Cells Alleviate Apoptosis and Oxidative Stress of Retinal Pigment Epithelial Cells Through Activation of Nrf2 Signaling Pathway.","authors":"Jin Sun Hwang, Hyun Beom Song, Geonhui Lee, Sangmoo Jeong, Dae Joong Ma","doi":"10.1089/jop.2024.0064","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Purpose:</i></b> To examine the potential protective effects of adipose-derived mesenchymal stem cell-derived extracellular vesicles (ASC-EVs) on ARPE-19 cells exposed to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) stress and to evaluate their ability to delay retinal degeneration in Royal College of Surgeons (RCS) rats. <b><i>Methods:</i></b> ARPE-19 cells were pre-treated with ASC-EVs for 24 h, followed by exposure to 200 μM H<sub>2</sub>O<sub>2</sub> for an additional 24 h. RCS rats received an intravitreal injection of phosphate-buffered saline in one eye and ASC-EVs in the other eye. <b><i>Results:</i></b> ASC-EV pretreatment significantly protected against H<sub>2</sub>O<sub>2</sub> in the Cell Counting Kit-8 assay and was also effective in the lactate dehydrogenase-release assay. It notably reduced early apoptosis (Annexin V-fluorescein isothiocyanate/propidium iodide assay) and late apoptosis (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling assay), while significantly decreasing intracellular reactive oxygen species, glutathione levels, and superoxide dismutase activity. <i>NFE2L2</i>, <i>HMOX1</i>, and <i>NQO1</i> mRNA levels, along with Nrf2, HO-1, and NQO1 protein levels, were significantly elevated with ASC-EV pretreatment. Compared with ARPE-19-derived EVs, 11 miRNAs were upregulated and 34 were downregulated in ASC-EVs. In RCS rats, intravitreal injections of ASC-EVs led to significant preservation of the outer nuclear layer and photoreceptor segments, along with increased nuclear Nrf2 expression and elevated HO-1 and NQO1 levels in the inner retina. Eyes that received intravitreal injections of ASC-EVs demonstrated significantly preserved electroretinography a- and b-wave amplitudes at 1 week post-injection, though this effect faded by 2 weeks. <b><i>Conclusions:</i></b> ASC-EVs mitigated apoptosis and oxidative stress in ARPE-19 cells subjected to H<sub>2</sub>O<sub>2</sub> exposure and temporarily slowed retinal degeneration in RCS rats via Nrf2 pathway activation by miRNAs.</p>","PeriodicalId":16689,"journal":{"name":"Journal of Ocular Pharmacology and Therapeutics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocular Pharmacology and Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jop.2024.0064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To examine the potential protective effects of adipose-derived mesenchymal stem cell-derived extracellular vesicles (ASC-EVs) on ARPE-19 cells exposed to hydrogen peroxide (H2O2) stress and to evaluate their ability to delay retinal degeneration in Royal College of Surgeons (RCS) rats. Methods: ARPE-19 cells were pre-treated with ASC-EVs for 24 h, followed by exposure to 200 μM H2O2 for an additional 24 h. RCS rats received an intravitreal injection of phosphate-buffered saline in one eye and ASC-EVs in the other eye. Results: ASC-EV pretreatment significantly protected against H2O2 in the Cell Counting Kit-8 assay and was also effective in the lactate dehydrogenase-release assay. It notably reduced early apoptosis (Annexin V-fluorescein isothiocyanate/propidium iodide assay) and late apoptosis (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling assay), while significantly decreasing intracellular reactive oxygen species, glutathione levels, and superoxide dismutase activity. NFE2L2, HMOX1, and NQO1 mRNA levels, along with Nrf2, HO-1, and NQO1 protein levels, were significantly elevated with ASC-EV pretreatment. Compared with ARPE-19-derived EVs, 11 miRNAs were upregulated and 34 were downregulated in ASC-EVs. In RCS rats, intravitreal injections of ASC-EVs led to significant preservation of the outer nuclear layer and photoreceptor segments, along with increased nuclear Nrf2 expression and elevated HO-1 and NQO1 levels in the inner retina. Eyes that received intravitreal injections of ASC-EVs demonstrated significantly preserved electroretinography a- and b-wave amplitudes at 1 week post-injection, though this effect faded by 2 weeks. Conclusions: ASC-EVs mitigated apoptosis and oxidative stress in ARPE-19 cells subjected to H2O2 exposure and temporarily slowed retinal degeneration in RCS rats via Nrf2 pathway activation by miRNAs.
期刊介绍:
Journal of Ocular Pharmacology and Therapeutics is the only peer-reviewed journal that combines the fields of ophthalmology and pharmacology to enable optimal treatment and prevention of ocular diseases and disorders. The Journal delivers the latest discoveries in the pharmacokinetics and pharmacodynamics of therapeutics for the treatment of ophthalmic disorders.
Journal of Ocular Pharmacology and Therapeutics coverage includes:
Glaucoma
Cataracts
Retinal degeneration
Ocular infection, trauma, and toxicology
Ocular drug delivery and biotransformation
Ocular pharmacotherapy/clinical trials
Ocular inflammatory and immune disorders
Gene and cell-based therapies
Ocular metabolic disorders
Ocular ischemia and blood flow
Proliferative disorders of the eye
Eyes on Drug Discovery - written by Gary D. Novack, PhD, featuring the latest updates on drug and device pipeline developments as well as policy/regulatory changes by the FDA.