Abdullah Almakrab, Mohamed T Elshazli, Ahmed Ibrahim, Yasser A Khalifa
{"title":"Assessment of Various Mitigation Strategies of Alkali-Silica Reactions in Concrete Using Accelerated Mortar Test.","authors":"Abdullah Almakrab, Mohamed T Elshazli, Ahmed Ibrahim, Yasser A Khalifa","doi":"10.3390/ma17205124","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread use of reinforced concrete continues to face challenges, particularly in mitigating alkali-silica reaction (ASR), due to its detrimental effects on concrete strength and durability. This paper investigates the effectiveness of using binary supplementary cementitious materials (SCMs) in mitigating ASR by incorporating metakaolin (MK) and waste glass powder (GP) as partial replacements for cement. Additionally, the potential of a new cement product, \"NewCem Plus\" (NCM), along with the use of basalt fibers and lithium, was evaluated through a 14-day accelerated mortar bar test following the ASTM C1260. This study also assessed concrete's properties such as its compressive strength and workability using the flow test. The results indicated that MK was effective, reducing expansion by 79%, 84%, and 88% with 10%, 20%, and 30% cement replacement, respectively, compared to the control mixture. On the other hand, GP showed a more modest reduction in expansion, with 10%, 20%, and 30% replacement levels reducing expansion by 20%, 43%, and 75%, respectively. Furthermore, the addition of lithium to MK significantly mitigated ASR, reducing expansion below the ASTM threshold. However, mixtures containing NewCem Plus, lithium, and basalt fibers showed minimal impact on ASR reduction. These findings underscore the viability of using binary or ternary blends of SCMs to mitigate ASR in concrete, encouraging their adoption in future concrete applications.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17205124","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use of reinforced concrete continues to face challenges, particularly in mitigating alkali-silica reaction (ASR), due to its detrimental effects on concrete strength and durability. This paper investigates the effectiveness of using binary supplementary cementitious materials (SCMs) in mitigating ASR by incorporating metakaolin (MK) and waste glass powder (GP) as partial replacements for cement. Additionally, the potential of a new cement product, "NewCem Plus" (NCM), along with the use of basalt fibers and lithium, was evaluated through a 14-day accelerated mortar bar test following the ASTM C1260. This study also assessed concrete's properties such as its compressive strength and workability using the flow test. The results indicated that MK was effective, reducing expansion by 79%, 84%, and 88% with 10%, 20%, and 30% cement replacement, respectively, compared to the control mixture. On the other hand, GP showed a more modest reduction in expansion, with 10%, 20%, and 30% replacement levels reducing expansion by 20%, 43%, and 75%, respectively. Furthermore, the addition of lithium to MK significantly mitigated ASR, reducing expansion below the ASTM threshold. However, mixtures containing NewCem Plus, lithium, and basalt fibers showed minimal impact on ASR reduction. These findings underscore the viability of using binary or ternary blends of SCMs to mitigate ASR in concrete, encouraging their adoption in future concrete applications.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.