SpinDoctor-IVIM: A virtual imaging framework for intravoxel incoherent motion MRI

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2024-10-16 DOI:10.1016/j.media.2024.103369
Mojtaba Lashgari , Zheyi Yang , Miguel O. Bernabeu , Jing-Rebecca Li , Alejandro F. Frangi
{"title":"SpinDoctor-IVIM: A virtual imaging framework for intravoxel incoherent motion MRI","authors":"Mojtaba Lashgari ,&nbsp;Zheyi Yang ,&nbsp;Miguel O. Bernabeu ,&nbsp;Jing-Rebecca Li ,&nbsp;Alejandro F. Frangi","doi":"10.1016/j.media.2024.103369","DOIUrl":null,"url":null,"abstract":"<div><div>Intravoxel incoherent motion (IVIM) imaging is increasingly recognised as an important tool in clinical MRI, where tissue perfusion and diffusion information can aid disease diagnosis, monitoring of patient recovery, and treatment outcome assessment. Currently, the discovery of biomarkers based on IVIM imaging, similar to other medical imaging modalities, is dependent on long preclinical and clinical validation pathways to link observable markers derived from images with the underlying pathophysiological mechanisms. To speed up this process, virtual IVIM imaging is proposed. This approach provides an efficient virtual imaging tool to design, evaluate, and optimise novel approaches for IVIM imaging. In this work, virtual IVIM imaging is developed through a new finite element solver, SpinDoctor-IVIM, which extends SpinDoctor, a diffusion MRI simulation toolbox. SpinDoctor-IVIM simulates IVIM imaging signals by solving the generalised Bloch–Torrey partial differential equation. The input velocity to SpinDoctor-IVIM is computed using HemeLB, an established Lattice Boltzmann blood flow simulator. Contrary to previous approaches, SpinDoctor-IVIM accounts for volumetric microvasculature during blood flow simulations, incorporates diffusion phenomena in the intravascular space, and accounts for the permeability between the intravascular and extravascular spaces. The above-mentioned features of the proposed framework are illustrated with simulations on a realistic microvasculature model.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"99 ","pages":"Article 103369"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524002949","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Intravoxel incoherent motion (IVIM) imaging is increasingly recognised as an important tool in clinical MRI, where tissue perfusion and diffusion information can aid disease diagnosis, monitoring of patient recovery, and treatment outcome assessment. Currently, the discovery of biomarkers based on IVIM imaging, similar to other medical imaging modalities, is dependent on long preclinical and clinical validation pathways to link observable markers derived from images with the underlying pathophysiological mechanisms. To speed up this process, virtual IVIM imaging is proposed. This approach provides an efficient virtual imaging tool to design, evaluate, and optimise novel approaches for IVIM imaging. In this work, virtual IVIM imaging is developed through a new finite element solver, SpinDoctor-IVIM, which extends SpinDoctor, a diffusion MRI simulation toolbox. SpinDoctor-IVIM simulates IVIM imaging signals by solving the generalised Bloch–Torrey partial differential equation. The input velocity to SpinDoctor-IVIM is computed using HemeLB, an established Lattice Boltzmann blood flow simulator. Contrary to previous approaches, SpinDoctor-IVIM accounts for volumetric microvasculature during blood flow simulations, incorporates diffusion phenomena in the intravascular space, and accounts for the permeability between the intravascular and extravascular spaces. The above-mentioned features of the proposed framework are illustrated with simulations on a realistic microvasculature model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpinDoctor-IVIM:体内非相干运动磁共振成像的虚拟成像框架。
体细胞内非相干运动(IVIM)成像越来越被认为是临床核磁共振成像的重要工具,其组织灌注和弥散信息有助于疾病诊断、患者康复监测和治疗效果评估。目前,基于 IVIM 成像的生物标记物的发现与其他医学成像模式类似,都依赖于漫长的临床前和临床验证途径,以便将从图像中获得的可观察标记物与潜在的病理生理机制联系起来。为了加快这一过程,我们提出了虚拟 IVIM 成像。这种方法提供了一种高效的虚拟成像工具,用于设计、评估和优化 IVIM 成像的新方法。在这项工作中,虚拟 IVIM 成像是通过新的有限元求解器 SpinDoctor-IVIM 开发的,它扩展了扩散磁共振成像仿真工具箱 SpinDoctor。SpinDoctor-IVIM 通过求解广义布洛赫-托雷偏微分方程来模拟 IVIM 成像信号。SpinDoctor-IVIM 的输入速度是通过 HemeLB 计算的,HemeLB 是一种成熟的格子玻尔兹曼血流模拟器。与之前的方法不同,SpinDoctor-IVIM 在血流模拟过程中考虑了体积微血管,纳入了血管内空间的扩散现象,并考虑了血管内和血管外空间之间的渗透性。通过对一个逼真的微血管模型进行模拟,说明了拟议框架的上述特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. AutoFOX: An automated cross-modal 3D fusion framework of coronary X-ray angiography and OCT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1