Ian B Chronis, Rachel Vistein, Avanti Gokhale, Victor Faundez, Manojkumar A Puthenveedu
{"title":"The beta 2 adrenergic receptor cross-linked interactome identifies 14-3-3 proteins as regulating the availability of signaling-competent receptors.","authors":"Ian B Chronis, Rachel Vistein, Avanti Gokhale, Victor Faundez, Manojkumar A Puthenveedu","doi":"10.1124/molpharm.124.000939","DOIUrl":null,"url":null,"abstract":"<p><p>The emerging picture of G protein-coupled receptor function suggests that the global signaling response is an integrated sum of a multitude of individual receptor responses, each regulated by their local protein environment. The beta 2 adrenergic receptor (B2AR) has long served as an example receptor in the development of this model. But the mechanism and the identity of the protein-protein interactions that govern the availability of receptors competent for signaling remains incompletely characterized. To address this question, we characterized the interactome of agonist-stimulated B2AR in HEK293 cells using FLAG co-immunoprecipitation coupled to SILAC labeling and mass spectrometry. Our B2AR cross-linked interactome identified 190 high-confidence proteins, including almost all known interacting proteins and six out of seven isoforms of the 14-3-3 family of scaffolding proteins. Inhibiting 14-3-3 proteins with the peptide difopein enhanced isoproterenol-stimulated adrenergic signaling via cAMP approximately three-fold, and increased both miniGs and arrestin recruitment to B2AR more than two fold each, without noticeably changing EC50 with respect to cAMP signaling or effector recruitment upon stimulation. Our results show that 14-3-3 proteins negatively regulate downstream signaling by inhibiting access of B2AR to effector proteins. We propose that 14-3-3 proteins maintain a dynamic pool of B2AR that has reduced signaling efficacy in response to acute agonist stimulation, limiting the amount of signaling-competent receptors at the plasma membrane. <b>Significance Statement</b> This study presents a new interactome of the agonist-stimulated beta 2 adrenergic receptor (B2AR), a paradigmatic GPCR that is both a model system for members of this class and an important signaling protein in respiratory, cardiovascular, and metabolic regulation. We identify 14-3-3 proteins as responsible for restricting B2AR access to signaling effectors and maintaining a receptor population that is insensitive to acute stimulation by agonists.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/molpharm.124.000939","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The emerging picture of G protein-coupled receptor function suggests that the global signaling response is an integrated sum of a multitude of individual receptor responses, each regulated by their local protein environment. The beta 2 adrenergic receptor (B2AR) has long served as an example receptor in the development of this model. But the mechanism and the identity of the protein-protein interactions that govern the availability of receptors competent for signaling remains incompletely characterized. To address this question, we characterized the interactome of agonist-stimulated B2AR in HEK293 cells using FLAG co-immunoprecipitation coupled to SILAC labeling and mass spectrometry. Our B2AR cross-linked interactome identified 190 high-confidence proteins, including almost all known interacting proteins and six out of seven isoforms of the 14-3-3 family of scaffolding proteins. Inhibiting 14-3-3 proteins with the peptide difopein enhanced isoproterenol-stimulated adrenergic signaling via cAMP approximately three-fold, and increased both miniGs and arrestin recruitment to B2AR more than two fold each, without noticeably changing EC50 with respect to cAMP signaling or effector recruitment upon stimulation. Our results show that 14-3-3 proteins negatively regulate downstream signaling by inhibiting access of B2AR to effector proteins. We propose that 14-3-3 proteins maintain a dynamic pool of B2AR that has reduced signaling efficacy in response to acute agonist stimulation, limiting the amount of signaling-competent receptors at the plasma membrane. Significance Statement This study presents a new interactome of the agonist-stimulated beta 2 adrenergic receptor (B2AR), a paradigmatic GPCR that is both a model system for members of this class and an important signaling protein in respiratory, cardiovascular, and metabolic regulation. We identify 14-3-3 proteins as responsible for restricting B2AR access to signaling effectors and maintaining a receptor population that is insensitive to acute stimulation by agonists.
期刊介绍:
Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include:
Molecular Signaling / Mechanism of Drug Action
Chemical Biology / Drug Discovery
Structure of Drug-Receptor Complex
Systems Analysis of Drug Action
Drug Transport / Metabolism