Validation and quantification of peptide antigens presented on MHCs using SureQuant.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Protocols Pub Date : 2024-10-22 DOI:10.1038/s41596-024-01076-x
Owen Leddy, Yufei Cui, Ryuhjin Ahn, Lauren Stopfer, Elizabeth Choe, Do Hun Kim, Malte Roerden, Stefani Spranger, Bryan D Bryson, Forest M White
{"title":"Validation and quantification of peptide antigens presented on MHCs using SureQuant.","authors":"Owen Leddy, Yufei Cui, Ryuhjin Ahn, Lauren Stopfer, Elizabeth Choe, Do Hun Kim, Malte Roerden, Stefani Spranger, Bryan D Bryson, Forest M White","doi":"10.1038/s41596-024-01076-x","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccines and immunotherapies that target peptide-major histocompatibility complexes (peptide-MHCs) have the potential to address multiple unmet medical needs in cancer and infectious disease. Designing vaccines and immunotherapies to target peptide-MHCs requires accurate identification of target peptides in infected or cancerous cells or tissue, and may require absolute or relative quantification to identify abundant targets and measure changes in presentation under different treatment conditions. Internal standard parallel reaction monitoring (also known as 'SureQuant') can be used to validate and/or quantify MHC peptides previously identified by using untargeted methods such as data-dependent acquisition. SureQuant MHC has three main use cases: (i) conclusive confirmation of the identities of putative MHC peptides via comparison with an internal synthetic stable isotope labeled (SIL) peptide standard; (ii) accurate relative quantification by using pre-formed heavy isotope-labeled peptide-MHC complexes (hipMHCs) containing SIL peptides as internal controls for technical variation; and (iii) absolute quantification of each target peptide by using different amounts of hipMHCs loaded with synthetic peptides containing one, two or three SIL amino acids to provide an internal standard curve. Absolute quantification can help determine whether the abundance of a peptide-MHC is sufficient for certain therapeutic modalities. SureQuant MHC therefore provides unique advantages for immunologists seeking to confidently validate antigenic targets and understand the dynamics of the MHC repertoire. After synthetic standards are ordered (3-4 weeks), this protocol can be carried out in 3-4 days and is suitable for individuals with mass spectrometry experience who are comfortable with customizing instrument methods.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01076-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Vaccines and immunotherapies that target peptide-major histocompatibility complexes (peptide-MHCs) have the potential to address multiple unmet medical needs in cancer and infectious disease. Designing vaccines and immunotherapies to target peptide-MHCs requires accurate identification of target peptides in infected or cancerous cells or tissue, and may require absolute or relative quantification to identify abundant targets and measure changes in presentation under different treatment conditions. Internal standard parallel reaction monitoring (also known as 'SureQuant') can be used to validate and/or quantify MHC peptides previously identified by using untargeted methods such as data-dependent acquisition. SureQuant MHC has three main use cases: (i) conclusive confirmation of the identities of putative MHC peptides via comparison with an internal synthetic stable isotope labeled (SIL) peptide standard; (ii) accurate relative quantification by using pre-formed heavy isotope-labeled peptide-MHC complexes (hipMHCs) containing SIL peptides as internal controls for technical variation; and (iii) absolute quantification of each target peptide by using different amounts of hipMHCs loaded with synthetic peptides containing one, two or three SIL amino acids to provide an internal standard curve. Absolute quantification can help determine whether the abundance of a peptide-MHC is sufficient for certain therapeutic modalities. SureQuant MHC therefore provides unique advantages for immunologists seeking to confidently validate antigenic targets and understand the dynamics of the MHC repertoire. After synthetic standards are ordered (3-4 weeks), this protocol can be carried out in 3-4 days and is suitable for individuals with mass spectrometry experience who are comfortable with customizing instrument methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 SureQuant 验证和量化呈现在 MHC 上的多肽抗原。
以肽-主要组织相容性复合物(肽-MHC)为靶标的疫苗和免疫疗法有可能满足癌症和传染病领域多种未得到满足的医疗需求。设计靶向多肽-主要组织相容性复合物的疫苗和免疫疗法需要准确识别感染或癌症细胞或组织中的靶向多肽,可能需要绝对或相对定量来识别丰富的靶标,并测量在不同治疗条件下靶标呈现的变化。内标平行反应监测(又称 "SureQuant")可用于验证和/或定量先前通过数据依赖性采集等非靶标方法鉴定的 MHC 肽。SureQuant MHC 有三种主要用途:(i) 通过与内部合成稳定同位素标记(SIL)肽标准进行比较,最终确认假定 MHC 肽的身份;(ii) 通过使用含有 SIL 肽的预制重同位素标记肽-MHC 复合物(hipMHC)作为技术差异的内部对照,进行准确的相对定量;(iii) 通过使用不同量的含有一个、两个或三个 SIL 氨基酸的合成肽的 hipMHC,提供内部标准曲线,对每个目标肽进行绝对定量。绝对定量有助于确定肽-MHC 的丰度是否足以用于某些治疗模式。因此,SureQuant MHC 为免疫学家提供了独特的优势,使他们能够自信地验证抗原靶标并了解 MHC 基因库的动态。在订购合成标准品后(3-4 周),该方案可在 3-4 天内完成,适合有质谱分析经验并能适应定制仪器方法的个人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
期刊最新文献
Synthesis of chiral gold helicoid nanoparticles using glutathione. Author Correction: Creating custom synthetic genomes in Escherichia coli with REXER and GENESIS. Biolayer interferometry for measuring the kinetics of protein-protein interactions and nanobody binding. RNA sample optimization for cryo-EM analysis. High-throughput glycosaminoglycan extraction and UHPLC-MS/MS quantification in human biofluids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1