Large language model use in clinical oncology

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2024-10-23 DOI:10.1038/s41698-024-00733-4
Nicolas Carl, Franziska Schramm, Sarah Haggenmüller, Jakob Nikolas Kather, Martin J. Hetz, Christoph Wies, Maurice Stephan Michel, Frederik Wessels, Titus J. Brinker
{"title":"Large language model use in clinical oncology","authors":"Nicolas Carl, Franziska Schramm, Sarah Haggenmüller, Jakob Nikolas Kather, Martin J. Hetz, Christoph Wies, Maurice Stephan Michel, Frederik Wessels, Titus J. Brinker","doi":"10.1038/s41698-024-00733-4","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) are undergoing intensive research for various healthcare domains. This systematic review and meta-analysis assesses current applications, methodologies, and the performance of LLMs in clinical oncology. A mixed-methods approach was used to extract, summarize, and compare methodological approaches and outcomes. This review includes 34 studies. LLMs are primarily evaluated on their ability to answer oncologic questions across various domains. The meta-analysis highlights a significant performance variance, influenced by diverse methodologies and evaluation criteria. Furthermore, differences in inherent model capabilities, prompting strategies, and oncological subdomains contribute to heterogeneity. The lack of use of standardized and LLM-specific reporting protocols leads to methodological disparities, which must be addressed to ensure comparability in LLM research and ultimately leverage the reliable integration of LLM technologies into clinical practice.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-17"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00733-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) are undergoing intensive research for various healthcare domains. This systematic review and meta-analysis assesses current applications, methodologies, and the performance of LLMs in clinical oncology. A mixed-methods approach was used to extract, summarize, and compare methodological approaches and outcomes. This review includes 34 studies. LLMs are primarily evaluated on their ability to answer oncologic questions across various domains. The meta-analysis highlights a significant performance variance, influenced by diverse methodologies and evaluation criteria. Furthermore, differences in inherent model capabilities, prompting strategies, and oncological subdomains contribute to heterogeneity. The lack of use of standardized and LLM-specific reporting protocols leads to methodological disparities, which must be addressed to ensure comparability in LLM research and ultimately leverage the reliable integration of LLM technologies into clinical practice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大语言模型在临床肿瘤学中的应用。
大语言模型(LLMs)正在各种医疗保健领域进行深入研究。本系统综述和荟萃分析评估了大语言模型目前在临床肿瘤学中的应用、方法和性能。我们采用了混合方法来提取、总结和比较方法和结果。本综述包括 34 项研究。LLM 主要根据其回答各领域肿瘤问题的能力进行评估。荟萃分析结果表明,受不同方法和评价标准的影响,LLM 的性能差异很大。此外,固有模型能力、提示策略和肿瘤子领域的差异也造成了异质性。缺乏标准化和 LLM 专用报告协议导致了方法上的差异,必须解决这些问题,以确保 LLM 研究的可比性,并最终将 LLM 技术可靠地整合到临床实践中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
A comprehensive evaluation of histopathology foundation models for ovarian cancer subtype classification. The burden and temporal trend of early onset pancreatic cancer based on the GBD 2021. Genetic ancestry concordant RNA splicing in prostate cancer involves oncogenic genes and associates with recurrence. Progress in personalized immunotherapy for patients with brain metastasis. A morphometric signature to identify ductal carcinoma in situ with a low risk of progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1