Leveraging Numerical Simulation Technology to Advance Drug Preparation: A Comprehensive Review of Application Scenarios and Cases.

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmaceutics Pub Date : 2024-10-07 DOI:10.3390/pharmaceutics16101304
Qifei Gu, Huichao Wu, Xue Sui, Xiaodan Zhang, Yongchao Liu, Wei Feng, Rui Zhou, Shouying Du
{"title":"Leveraging Numerical Simulation Technology to Advance Drug Preparation: A Comprehensive Review of Application Scenarios and Cases.","authors":"Qifei Gu, Huichao Wu, Xue Sui, Xiaodan Zhang, Yongchao Liu, Wei Feng, Rui Zhou, Shouying Du","doi":"10.3390/pharmaceutics16101304","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Numerical simulation plays an important role in pharmaceutical preparation recently. Mechanistic models, as a type of numerical model, are widely used in the study of pharmaceutical preparations. Mechanistic models are based on a priori knowledge, i.e., laws of physics, chemistry, and biology. However, due to interdisciplinary reasons, pharmacy researchers have greater difficulties in using computer models.</p><p><strong>Methods: </strong>In this paper, we highlight the application scenarios and examples of mechanistic modelling in pharmacy research and provide a reference for drug researchers to get started.</p><p><strong>Results: </strong>By establishing a suitable model and inputting preparation parameters, researchers can analyze the drug preparation process. Therefore, mechanistic models are effective tools to optimize the preparation parameters and predict potential quality problems of the product. With product quality parameters as the ultimate goal, the experiment design is optimized by mechanistic models. This process emphasizes the concept of quality by design.</p><p><strong>Conclusions: </strong>The use of numerical simulation saves experimental cost and time, and speeds up the experimental process. In pharmacy experiments, part of the physical information and the change processes are difficult to obtain, such as the mechanical phenomena during tablet compression and the airflow details in the nasal cavity. Therefore, it is necessary to predict the information and guide the formulation with the help of mechanistic models.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"16 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16101304","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: Numerical simulation plays an important role in pharmaceutical preparation recently. Mechanistic models, as a type of numerical model, are widely used in the study of pharmaceutical preparations. Mechanistic models are based on a priori knowledge, i.e., laws of physics, chemistry, and biology. However, due to interdisciplinary reasons, pharmacy researchers have greater difficulties in using computer models.

Methods: In this paper, we highlight the application scenarios and examples of mechanistic modelling in pharmacy research and provide a reference for drug researchers to get started.

Results: By establishing a suitable model and inputting preparation parameters, researchers can analyze the drug preparation process. Therefore, mechanistic models are effective tools to optimize the preparation parameters and predict potential quality problems of the product. With product quality parameters as the ultimate goal, the experiment design is optimized by mechanistic models. This process emphasizes the concept of quality by design.

Conclusions: The use of numerical simulation saves experimental cost and time, and speeds up the experimental process. In pharmacy experiments, part of the physical information and the change processes are difficult to obtain, such as the mechanical phenomena during tablet compression and the airflow details in the nasal cavity. Therefore, it is necessary to predict the information and guide the formulation with the help of mechanistic models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数值模拟技术推进药物制剂:应用场景和案例的全面回顾。
背景/目的:近年来,数值模拟在药物制剂中发挥着重要作用。机理模型作为数值模型的一种,被广泛应用于药物制剂的研究中。机理模型基于先验知识,即物理、化学和生物学定律。然而,由于跨学科的原因,药剂学研究人员在使用计算机模型时存在较大困难:本文将重点介绍机理建模在药学研究中的应用场景和实例,为药物研究人员提供入门参考:结果:通过建立合适的模型并输入制备参数,研究人员可以分析药物的制备过程。因此,机理模型是优化制备参数和预测潜在产品质量问题的有效工具。以产品质量参数为最终目标,通过机理模型优化实验设计。这一过程强调了 "设计决定质量 "的理念:结论:使用数值模拟可以节省实验成本和时间,加快实验进程。在药学实验中,部分物理信息和变化过程难以获得,如压片过程中的机械现象和鼻腔中的气流细节。因此,有必要借助机理模型来预测这些信息并指导配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Modular Nanotransporters Deliver Anti-Keap1 Monobody into Mouse Hepatocytes, Thereby Inhibiting Production of Reactive Oxygen Species. Nanomaterial-Enhanced Microneedles: Emerging Therapies for Diabetes and Obesity. Effectiveness of Lyoprotectants in Protein Stabilization During Lyophilization. Recent Advances in the Drugs and Glucose-Responsive Drug Delivery Systems for the Treatment of Diabetes: A Systematic Review. A Novel Hydrogel Sponge for Three-Dimensional Cell Culture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1