{"title":"Evaluation of host status of garlic varieties for a plant-parasitic nematode, <i>Ditylenchus destructor</i>, by using in vitro inoculation.","authors":"Kazuki Tadamura, Atsushi Torada, Toyoshi Yoshiga","doi":"10.5511/plantbiotechnology.24.0428a","DOIUrl":null,"url":null,"abstract":"<p><p><i>Ditylenchus destructor</i> is a plant-parasitic nematode that severely damages garlic (<i>Allium sativum</i> L.) in Japan. <i>D. destructor</i> is detected in roots, bulbs, and outer bulb skins of garlic at harvest; however, the resistance of garlic to <i>D. destructor</i> infection is not well understood. Here, we investigated the propagation of <i>D. destructor</i> in storage organs and roots using in vitro plantlets of six Japanese garlic varieties to exclude the effects of microbes and to uniform growing conditions. In vitro inoculation can proceed simultaneously with vegetative growth, storage organ formation of garlic plantlets, and <i>D. destructor</i> infection. In 'Fukuchi-white', a variety susceptible to <i>D. destructor</i>, nematodes successfully propagated in storage organs and roots. Furthermore, the nematodes invaded and propagated in the newly formed storage organs. By contrast, 'Kirishima', 'Hirado', and 'Shishimaru' substantially suppressed more the propagation of the nematodes in storage organs and roots than 'Fukuchi-white'. Additionally, the propagation of nematodes in newly formed storage organs was inhibited in these three varieties. 'Shishimaru' showed unique responses to <i>D. destructor</i> infection: nematode propagation was the lowest among six varieties in inoculation tests and the nematode-inoculated cloves turned brown. Our results suggest that several garlic varieties have resistance mechanisms that suppress the propagation of <i>D. destructor</i> in storage organs and roots, and that in vitro inoculation methods are useful for selecting resistant garlic varieties. These findings will help developing novel <i>D. destructor</i>-resistant garlic varieties and our further understanding of garlic-nematode interactions.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 2","pages":"137-145"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0428a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ditylenchus destructor is a plant-parasitic nematode that severely damages garlic (Allium sativum L.) in Japan. D. destructor is detected in roots, bulbs, and outer bulb skins of garlic at harvest; however, the resistance of garlic to D. destructor infection is not well understood. Here, we investigated the propagation of D. destructor in storage organs and roots using in vitro plantlets of six Japanese garlic varieties to exclude the effects of microbes and to uniform growing conditions. In vitro inoculation can proceed simultaneously with vegetative growth, storage organ formation of garlic plantlets, and D. destructor infection. In 'Fukuchi-white', a variety susceptible to D. destructor, nematodes successfully propagated in storage organs and roots. Furthermore, the nematodes invaded and propagated in the newly formed storage organs. By contrast, 'Kirishima', 'Hirado', and 'Shishimaru' substantially suppressed more the propagation of the nematodes in storage organs and roots than 'Fukuchi-white'. Additionally, the propagation of nematodes in newly formed storage organs was inhibited in these three varieties. 'Shishimaru' showed unique responses to D. destructor infection: nematode propagation was the lowest among six varieties in inoculation tests and the nematode-inoculated cloves turned brown. Our results suggest that several garlic varieties have resistance mechanisms that suppress the propagation of D. destructor in storage organs and roots, and that in vitro inoculation methods are useful for selecting resistant garlic varieties. These findings will help developing novel D. destructor-resistant garlic varieties and our further understanding of garlic-nematode interactions.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.