Melanie Court, Marta Macau, Maddalena Ranucci, Tânia Marquês, Tiago Repolho, Vanessa Madeira Lopes, Rui Rosa, José Ricardo Paula
{"title":"Oxygen loss compromises growth and cognition of cuttlefish newborns.","authors":"Melanie Court, Marta Macau, Maddalena Ranucci, Tânia Marquês, Tiago Repolho, Vanessa Madeira Lopes, Rui Rosa, José Ricardo Paula","doi":"10.1098/rspb.2024.1291","DOIUrl":null,"url":null,"abstract":"<p><p>Ocean deoxygenation and standing levels of hypoxia are shrinking fundamental niches, particularly in coastal areas, yet documented repercussions on species development and behaviour are limited. Here, we tackled the impacts of deoxygenation (7 mg O<sub>2</sub> l<sup>-1</sup>), mild hypoxia (nocturnal 5 mg O<sub>2</sub> l<sup>-1</sup>) and severe hypoxia (nocturnal 2 mg O<sub>2</sub> l<sup>-1</sup>) on cuttlefish (<i>Sepia officinalis</i>) development (hatching success, development time, mantle length), cognition (ability to learn individually and socially) and behaviour (ability to camouflage and to explore its surroundings spatially). We found that hypoxia yielded lower survival rates, smaller body sizes and inhibited predatory (increased latency to attack the prey) and anti-predator (camouflage) behaviours. Acute and chronic exposure to low oxygen produced similar effects on cognition (inability to socially learn, increased open-field activity levels, no changes in thigmotaxis). It is thus expected that, although cuttlefish can withstand oxygen limitation to a certain degree, expanding hypoxic zones will diminish current habitat suitability.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.1291","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean deoxygenation and standing levels of hypoxia are shrinking fundamental niches, particularly in coastal areas, yet documented repercussions on species development and behaviour are limited. Here, we tackled the impacts of deoxygenation (7 mg O2 l-1), mild hypoxia (nocturnal 5 mg O2 l-1) and severe hypoxia (nocturnal 2 mg O2 l-1) on cuttlefish (Sepia officinalis) development (hatching success, development time, mantle length), cognition (ability to learn individually and socially) and behaviour (ability to camouflage and to explore its surroundings spatially). We found that hypoxia yielded lower survival rates, smaller body sizes and inhibited predatory (increased latency to attack the prey) and anti-predator (camouflage) behaviours. Acute and chronic exposure to low oxygen produced similar effects on cognition (inability to socially learn, increased open-field activity levels, no changes in thigmotaxis). It is thus expected that, although cuttlefish can withstand oxygen limitation to a certain degree, expanding hypoxic zones will diminish current habitat suitability.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.