Frederik Massie, Steven Vits, Johan Verbraecken, Jeroen Bergmann
{"title":"The evaluation of a novel single-lead biopotential device for home sleep testing.","authors":"Frederik Massie, Steven Vits, Johan Verbraecken, Jeroen Bergmann","doi":"10.1093/sleep/zsae248","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>This paper reports on the clinical evaluation of the sleep staging performance of a novel single-lead biopotential device.</p><p><strong>Methods: </strong>133 patients suspected of obstructive sleep apnea were included in a multi-site cohort. All patients underwent polysomnography and received the study device, a single-lead biopotential measurement device attached to the forehead. Clinical endpoint parameters were selected to evaluate the device's ability to determine sleep stages. Finally, the device's performance was compared to the clinical study results of comparable devices.</p><p><strong>Results: </strong>Concurrent PSG and study device data were successfully acquired for 106 of the 133 included patients. The results of this study demonstrated significant similarity in overall sleep staging performance (5-stage Cohen's Kappa of 0.70) to the best-performing reduced-lead biopotential device to which it was compared (5-stage Cohen's Kappa of 0.73). Contrary to the comparator devices, the study device reported a higher Cohen's Kappa for REM (0.78) compared to N3 (0.61), which can be explained by its particular measuring electrode placement (diagonally across the lateral cross-section of the eye). This placement was optimized to ensure the polarity of rapid eye movements could be adequately captured, enhancing the capacity to discriminate between N3 and REM sleep when using only a single-lead setup.</p><p><strong>Conclusions: </strong>The results of this study demonstrate the feasibility of incorporating a single-lead biopotential extension in a reduced-channel home sleep apnea testing setup. Such incorporation could narrow the gap in the functionality of reduced-channel home sleep testing and in-lab polysomnography without compromising the patient's ease of use and comfort.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsae248","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Study objectives: This paper reports on the clinical evaluation of the sleep staging performance of a novel single-lead biopotential device.
Methods: 133 patients suspected of obstructive sleep apnea were included in a multi-site cohort. All patients underwent polysomnography and received the study device, a single-lead biopotential measurement device attached to the forehead. Clinical endpoint parameters were selected to evaluate the device's ability to determine sleep stages. Finally, the device's performance was compared to the clinical study results of comparable devices.
Results: Concurrent PSG and study device data were successfully acquired for 106 of the 133 included patients. The results of this study demonstrated significant similarity in overall sleep staging performance (5-stage Cohen's Kappa of 0.70) to the best-performing reduced-lead biopotential device to which it was compared (5-stage Cohen's Kappa of 0.73). Contrary to the comparator devices, the study device reported a higher Cohen's Kappa for REM (0.78) compared to N3 (0.61), which can be explained by its particular measuring electrode placement (diagonally across the lateral cross-section of the eye). This placement was optimized to ensure the polarity of rapid eye movements could be adequately captured, enhancing the capacity to discriminate between N3 and REM sleep when using only a single-lead setup.
Conclusions: The results of this study demonstrate the feasibility of incorporating a single-lead biopotential extension in a reduced-channel home sleep apnea testing setup. Such incorporation could narrow the gap in the functionality of reduced-channel home sleep testing and in-lab polysomnography without compromising the patient's ease of use and comfort.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.