Bayesian Empirical Likelihood Regression for Semiparametric Estimation of Optimal Dynamic Treatment Regimes.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Medicine Pub Date : 2024-12-10 Epub Date: 2024-10-24 DOI:10.1002/sim.10251
Weichang Yu, Howard Bondell
{"title":"Bayesian Empirical Likelihood Regression for Semiparametric Estimation of Optimal Dynamic Treatment Regimes.","authors":"Weichang Yu, Howard Bondell","doi":"10.1002/sim.10251","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a semiparametric approach to Bayesian modeling of dynamic treatment regimes that is built on a Bayesian likelihood-based regression estimation framework. Methods based on this framework exhibit a probabilistic coherence property that leads to accurate estimation of the optimal dynamic treatment regime. Unlike most Bayesian estimation methods, our proposed method avoids strong distributional assumptions for the intermediate and final outcomes by utilizing empirical likelihoods. Our proposed method allows for either linear, or more flexible forms of mean functions for the stagewise outcomes. A variational Bayes approximation is used for computation to avoid common pitfalls associated with Markov Chain Monte Carlo approaches coupled with empirical likelihood. Through simulations and analysis of the STAR*D sequential randomized trial data, our proposed method demonstrates superior accuracy over Q-learning and parametric Bayesian likelihood-based regression estimation, particularly when the parametric assumptions of regression error distributions may be potentially violated.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"5461-5472"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10251","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a semiparametric approach to Bayesian modeling of dynamic treatment regimes that is built on a Bayesian likelihood-based regression estimation framework. Methods based on this framework exhibit a probabilistic coherence property that leads to accurate estimation of the optimal dynamic treatment regime. Unlike most Bayesian estimation methods, our proposed method avoids strong distributional assumptions for the intermediate and final outcomes by utilizing empirical likelihoods. Our proposed method allows for either linear, or more flexible forms of mean functions for the stagewise outcomes. A variational Bayes approximation is used for computation to avoid common pitfalls associated with Markov Chain Monte Carlo approaches coupled with empirical likelihood. Through simulations and analysis of the STAR*D sequential randomized trial data, our proposed method demonstrates superior accuracy over Q-learning and parametric Bayesian likelihood-based regression estimation, particularly when the parametric assumptions of regression error distributions may be potentially violated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯经验似然回归半参数估计最佳动态治疗方案。
我们提出了一种基于贝叶斯似然回归估计框架的动态治疗制度贝叶斯半参数建模方法。基于该框架的方法具有概率一致性特性,能准确估计出最佳动态治疗方案。与大多数贝叶斯估计方法不同,我们提出的方法利用经验似然法,避免了对中间和最终结果的强分布假设。我们提出的方法允许对阶段性结果采用线性或更灵活的均值函数形式。计算中使用了变异贝叶斯近似法,以避免与马尔可夫链蒙特卡罗方法和经验似然法相关的常见缺陷。通过对 STAR*D 连续随机试验数据的模拟和分析,我们提出的方法比 Q-learning 和基于参数贝叶斯似然法的回归估计更准确,尤其是在可能违反回归误差分布参数假设的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
期刊最新文献
A Novel Bayesian Spatio-Temporal Surveillance Metric to Predict Emerging Infectious Disease Areas of High Disease Risk. Does Remdesivir Lower COVID-19 Mortality? A Subgroup Analysis of Hospitalized Adults Receiving Supplemental Oxygen. Modeling Chronic Disease Mortality by Methods From Accelerated Life Testing. A Nonparametric Global Win Probability Approach to the Analysis and Sizing of Randomized Controlled Trials With Multiple Endpoints of Different Scales and Missing Data: Beyond O'Brien-Wei-Lachin. Causal Inference for Continuous Multiple Time Point Interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1