{"title":"Bayesian Empirical Likelihood Regression for Semiparametric Estimation of Optimal Dynamic Treatment Regimes.","authors":"Weichang Yu, Howard Bondell","doi":"10.1002/sim.10251","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a semiparametric approach to Bayesian modeling of dynamic treatment regimes that is built on a Bayesian likelihood-based regression estimation framework. Methods based on this framework exhibit a probabilistic coherence property that leads to accurate estimation of the optimal dynamic treatment regime. Unlike most Bayesian estimation methods, our proposed method avoids strong distributional assumptions for the intermediate and final outcomes by utilizing empirical likelihoods. Our proposed method allows for either linear, or more flexible forms of mean functions for the stagewise outcomes. A variational Bayes approximation is used for computation to avoid common pitfalls associated with Markov Chain Monte Carlo approaches coupled with empirical likelihood. Through simulations and analysis of the STAR*D sequential randomized trial data, our proposed method demonstrates superior accuracy over Q-learning and parametric Bayesian likelihood-based regression estimation, particularly when the parametric assumptions of regression error distributions may be potentially violated.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"5461-5472"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10251","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a semiparametric approach to Bayesian modeling of dynamic treatment regimes that is built on a Bayesian likelihood-based regression estimation framework. Methods based on this framework exhibit a probabilistic coherence property that leads to accurate estimation of the optimal dynamic treatment regime. Unlike most Bayesian estimation methods, our proposed method avoids strong distributional assumptions for the intermediate and final outcomes by utilizing empirical likelihoods. Our proposed method allows for either linear, or more flexible forms of mean functions for the stagewise outcomes. A variational Bayes approximation is used for computation to avoid common pitfalls associated with Markov Chain Monte Carlo approaches coupled with empirical likelihood. Through simulations and analysis of the STAR*D sequential randomized trial data, our proposed method demonstrates superior accuracy over Q-learning and parametric Bayesian likelihood-based regression estimation, particularly when the parametric assumptions of regression error distributions may be potentially violated.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.