Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations.

IF 2.8 4区 医学 Q2 INFECTIOUS DISEASES Tropical Medicine and Infectious Disease Pub Date : 2024-09-30 DOI:10.3390/tropicalmed9100228
Andreas Sarantopoulos, Christina Mastori Kourmpani, Atshaya Lily Yokarasa, Chiedza Makamanzi, Polyna Antoniou, Nikolaos Spernovasilis, Constantinos Tsioutis
{"title":"Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations.","authors":"Andreas Sarantopoulos, Christina Mastori Kourmpani, Atshaya Lily Yokarasa, Chiedza Makamanzi, Polyna Antoniou, Nikolaos Spernovasilis, Constantinos Tsioutis","doi":"10.3390/tropicalmed9100228","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) in clinical medicine marks a revolutionary shift, enhancing diagnostic accuracy, therapeutic efficacy, and overall healthcare delivery. This review explores the current uses, benefits, limitations, and future applications of AI in infectious diseases, highlighting its specific applications in diagnostics, clinical decision making, and personalized medicine. The transformative potential of AI in infectious diseases is emphasized, addressing gaps in rapid and accurate disease diagnosis, surveillance, outbreak detection and management, and treatment optimization. Despite these advancements, significant limitations and challenges exist, including data privacy concerns, potential biases, and ethical dilemmas. The article underscores the need for stringent regulatory frameworks and inclusive databases to ensure equitable, ethical, and effective AI utilization in the field of clinical and laboratory infectious diseases.</p>","PeriodicalId":23330,"journal":{"name":"Tropical Medicine and Infectious Disease","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Medicine and Infectious Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tropicalmed9100228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of artificial intelligence (AI) in clinical medicine marks a revolutionary shift, enhancing diagnostic accuracy, therapeutic efficacy, and overall healthcare delivery. This review explores the current uses, benefits, limitations, and future applications of AI in infectious diseases, highlighting its specific applications in diagnostics, clinical decision making, and personalized medicine. The transformative potential of AI in infectious diseases is emphasized, addressing gaps in rapid and accurate disease diagnosis, surveillance, outbreak detection and management, and treatment optimization. Despite these advancements, significant limitations and challenges exist, including data privacy concerns, potential biases, and ethical dilemmas. The article underscores the need for stringent regulatory frameworks and inclusive databases to ensure equitable, ethical, and effective AI utilization in the field of clinical and laboratory infectious diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传染病临床实践中的人工智能:差距、机遇和局限性概述。
人工智能(AI)与临床医学的结合标志着一种革命性的转变,它能提高诊断的准确性、治疗效果和整体医疗服务。本综述探讨了人工智能在传染病领域的当前用途、优势、局限性和未来应用,重点介绍了其在诊断、临床决策和个性化医疗方面的具体应用。文中强调了人工智能在传染病领域的变革潜力,以解决在快速准确的疾病诊断、监测、疫情检测和管理以及治疗优化方面存在的差距。尽管取得了这些进步,但仍存在重大限制和挑战,包括数据隐私问题、潜在偏见和伦理困境。文章强调,有必要建立严格的监管框架和包容性数据库,以确保在临床和实验室传染病领域公平、道德和有效地利用人工智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tropical Medicine and Infectious Disease
Tropical Medicine and Infectious Disease Medicine-Public Health, Environmental and Occupational Health
CiteScore
3.90
自引率
10.30%
发文量
353
审稿时长
11 weeks
期刊最新文献
Host Preferences and Impact of Climate on Blood Feeding in Anopheles funestus Group from South Africa. Leveraging Climate Data for Dengue Forecasting in Ba Ria Vung Tau Province, Vietnam: An Advanced Machine Learning Approach. The Effect of Larval Exposure to Heavy Metals on the Gut Microbiota Composition of Adult Anopheles arabiensis (Diptera: Culicidae). Amphimeriasis in Ecuador-Prevalence, Knowledge, and Socio-Cultural Practices Among Indigenous Chachi and Montubios Populations: A Mixed-Methods Cross-Sectional Study. Chronic Rheumatologic Disease in Chikungunya Virus Fever: Results from a Cohort Study Conducted in Piedecuesta, Colombia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1