{"title":"Size-reduced DREADD derivatives for AAV-assisted multimodal chemogenetic control of neuronal activity and behavior.","authors":"Takahito Miyake, Kaho Tanaka, Yutsuki Inoue, Yuji Nagai, Reo Nishimura, Takehito Seta, Shumpei Nakagawa, Ken-Ichi Inoue, Emi Hasegawa, Takafumi Minamimoto, Masao Doi","doi":"10.1016/j.crmeth.2024.100881","DOIUrl":null,"url":null,"abstract":"<p><p>Designer receptors exclusively activated by designer drugs (DREADDs) are engineered G-protein-coupled receptors that afford reversible manipulation of neuronal activity in vivo. Here, we introduce size-reduced DREADD derivatives miniD<sub>q</sub> and miniD<sub>i</sub>, which inherit the basic receptor properties from the G<sub>q</sub>-coupled excitatory receptor hM3D<sub>q</sub> and the G<sub>i</sub>-coupled inhibitory receptor hM4D<sub>i</sub>, respectively, while being approximately 30% smaller in size. Taking advantage of the compact size of the receptors, we generated an adeno-associated virus (AAV) vector carrying both miniD<sub>q</sub> and the other DREADD family receptor (κ-opioid receptor-based inhibitory DREADD [KORD]) within the maximum AAV capacity (4.7 kb), allowing us to modulate neuronal activity and animal behavior in both excitatory and inhibitory directions using a single viral vector. We confirmed that expressing miniD<sub>q</sub>, but not miniD<sub>i</sub>, allowed activation of striatum activity in the cynomolgus monkey (Macaca fascicularis). The compact DREADDs may thus widen the opportunity for multiplexed interrogation and/or intervention in neuronal regulation in mice and non-human primates.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are engineered G-protein-coupled receptors that afford reversible manipulation of neuronal activity in vivo. Here, we introduce size-reduced DREADD derivatives miniDq and miniDi, which inherit the basic receptor properties from the Gq-coupled excitatory receptor hM3Dq and the Gi-coupled inhibitory receptor hM4Di, respectively, while being approximately 30% smaller in size. Taking advantage of the compact size of the receptors, we generated an adeno-associated virus (AAV) vector carrying both miniDq and the other DREADD family receptor (κ-opioid receptor-based inhibitory DREADD [KORD]) within the maximum AAV capacity (4.7 kb), allowing us to modulate neuronal activity and animal behavior in both excitatory and inhibitory directions using a single viral vector. We confirmed that expressing miniDq, but not miniDi, allowed activation of striatum activity in the cynomolgus monkey (Macaca fascicularis). The compact DREADDs may thus widen the opportunity for multiplexed interrogation and/or intervention in neuronal regulation in mice and non-human primates.