Guangwei Xiong, Bo Chen, Lei Ma, Longpeng Jia, Shunian Chen, Ke Wu, Jing Ning, Bin Zhu, Junwang Guo
{"title":"[Research on <i>in-vivo</i> electron paramagnetic resonance spectrum classification and radiation dose prediction based on machine learning].","authors":"Guangwei Xiong, Bo Chen, Lei Ma, Longpeng Jia, Shunian Chen, Ke Wu, Jing Ning, Bin Zhu, Junwang Guo","doi":"10.7507/1001-5515.202302015","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>in-vivo</i> electron paramagnetic resonance (EPR) method can be used for on-site, rapid, and non-invasive detection of radiation dose to casualties after nuclear and radiation emergencies. For <i>in-vivo</i> EPR spectrum analysis, manual labeling of peaks and calculation of signal intensity are often used, which have problems such as large workload and interference by subjective factors. In this study, a method for automatic classification and identification of <i>in-vivo</i> EPR spectra was established using support vector machine (SVM) technology, which can in-batch and automatically identify and screen out invalid spectra due to vibration and dental surface water interference during <i>in-vivo</i> EPR measurements. In this study, a spectrum analysis method based on genetic algorithm optimization neural network (GA-BPNN) was established, which can automatically identify the radiation-induced signals in <i>in-vivo</i> EPR spectra and predict the radiation doses received by the injured. The experimental results showed that the SVM and GA-BPNN spectrum processing methods established in this study could effectively accomplish the automatic spectra classification and radiation dose prediction, and could meet the needs of dose assessment in nuclear emergency. This study explored the application of machine learning methods in EPR spectrum processing, improved the intelligence level of EPR spectrum processing, and would help to enhance the efficiency of mass EPR spectra processing.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527747/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202302015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The in-vivo electron paramagnetic resonance (EPR) method can be used for on-site, rapid, and non-invasive detection of radiation dose to casualties after nuclear and radiation emergencies. For in-vivo EPR spectrum analysis, manual labeling of peaks and calculation of signal intensity are often used, which have problems such as large workload and interference by subjective factors. In this study, a method for automatic classification and identification of in-vivo EPR spectra was established using support vector machine (SVM) technology, which can in-batch and automatically identify and screen out invalid spectra due to vibration and dental surface water interference during in-vivo EPR measurements. In this study, a spectrum analysis method based on genetic algorithm optimization neural network (GA-BPNN) was established, which can automatically identify the radiation-induced signals in in-vivo EPR spectra and predict the radiation doses received by the injured. The experimental results showed that the SVM and GA-BPNN spectrum processing methods established in this study could effectively accomplish the automatic spectra classification and radiation dose prediction, and could meet the needs of dose assessment in nuclear emergency. This study explored the application of machine learning methods in EPR spectrum processing, improved the intelligence level of EPR spectrum processing, and would help to enhance the efficiency of mass EPR spectra processing.