A rate-responsive duty-cycling protocol for leadless pacemaker synchronization.

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical Engineering Letters Pub Date : 2024-08-19 eCollection Date: 2024-11-01 DOI:10.1007/s13534-024-00413-z
Adrian Ryser, Tobias Reichlin, Jürgen Burger, Thomas Niederhauser, Andreas Haeberlin
{"title":"A rate-responsive duty-cycling protocol for leadless pacemaker synchronization.","authors":"Adrian Ryser, Tobias Reichlin, Jürgen Burger, Thomas Niederhauser, Andreas Haeberlin","doi":"10.1007/s13534-024-00413-z","DOIUrl":null,"url":null,"abstract":"<p><p>Dual-chamber leadless pacemakers (LLPMs) consist of two implants, one in the right atrium and one in the right ventricle. Inter-device communication, required for atrioventricular (AV) synchrony, however, reduces the projected longevity of commercial dual-chamber LLPMs by 35-45%. This work analyzes the power-saving potential and the resulting impact on AV-synchrony for a novel LLPM synchronization protocol. Relevant parameters of the proposed window scheduling algorithm were optimized with system-level simulations investigating the resulting trade-off between transceiver current consumption and AV-synchrony. The parameter set included the algorithm's setpoint for the target number of windows per cardiac cycle and the number of averaging cycles used in the window update calculation. The sensing inputs for the LLPM model were derived from human electrocardiogram recordings in the MIT-BIH Arrhythmia Database. Transceiver current consumption was estimated by combining the simulation results on the required communication resources with electrical measurements of a receiver microchip developed for LLPM synchronization in previous work. The performance ratio given by AV-synchrony divided by current consumption was maximized for a target of one window per cardiac cycle and three averaging cycles. Median transceiver current of both LLPMs combined was 166 nA (interquartile range: 152-183 nA) and median AV-synchrony was 92.5%. This corresponded to median reduction of 18.3% and 3.2% in current consumption and AV-synchrony, respectively, compared to a non-rate-responsive implementation of the same protocol, which prioritized maximum AV-synchrony. In conclusion, adopting a rate-responsive communication protocol may significantly increase device longevity of dual-chamber LLPMs without compromising AV-synchrony, potentially reducing the frequency of device replacements.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"14 6","pages":"1397-1407"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502617/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00413-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dual-chamber leadless pacemakers (LLPMs) consist of two implants, one in the right atrium and one in the right ventricle. Inter-device communication, required for atrioventricular (AV) synchrony, however, reduces the projected longevity of commercial dual-chamber LLPMs by 35-45%. This work analyzes the power-saving potential and the resulting impact on AV-synchrony for a novel LLPM synchronization protocol. Relevant parameters of the proposed window scheduling algorithm were optimized with system-level simulations investigating the resulting trade-off between transceiver current consumption and AV-synchrony. The parameter set included the algorithm's setpoint for the target number of windows per cardiac cycle and the number of averaging cycles used in the window update calculation. The sensing inputs for the LLPM model were derived from human electrocardiogram recordings in the MIT-BIH Arrhythmia Database. Transceiver current consumption was estimated by combining the simulation results on the required communication resources with electrical measurements of a receiver microchip developed for LLPM synchronization in previous work. The performance ratio given by AV-synchrony divided by current consumption was maximized for a target of one window per cardiac cycle and three averaging cycles. Median transceiver current of both LLPMs combined was 166 nA (interquartile range: 152-183 nA) and median AV-synchrony was 92.5%. This corresponded to median reduction of 18.3% and 3.2% in current consumption and AV-synchrony, respectively, compared to a non-rate-responsive implementation of the same protocol, which prioritized maximum AV-synchrony. In conclusion, adopting a rate-responsive communication protocol may significantly increase device longevity of dual-chamber LLPMs without compromising AV-synchrony, potentially reducing the frequency of device replacements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无导联起搏器同步的速率响应式占空比循环协议。
双腔无导线起搏器(LLPM)由两个植入体组成,一个位于右心房,另一个位于右心室。然而,房室(AV)同步所需的设备间通信使商用双腔 LLPM 的预期寿命缩短了 35-45%。本研究分析了新型 LLPM 同步协议的省电潜力及其对房室同步的影响。通过系统级仿真优化了拟议窗口调度算法的相关参数,研究了收发器电流消耗和 AV 同步性之间的权衡。参数集包括每个心动周期窗口目标数的算法设定点和窗口更新计算中使用的平均周期数。LLPM 模型的传感输入来自 MIT-BIH 心律失常数据库中的人体心电图记录。收发器的电流消耗是通过将所需通信资源的模拟结果与先前工作中为 LLPM 同步开发的接收器微芯片的电气测量结果相结合来估算的。在每个心动周期一个窗口和三个平均周期的目标下,房室同步除以电流消耗的性能比达到最大。两个 LLPM 的收发器电流中位数合计为 166 nA(四分位间范围:152-183 nA),房室同步率中位数为 92.5%。与同一协议的非速率响应型实施相比,这相当于电流消耗和房室同步性的中位数分别降低了 18.3% 和 3.2%,而非速率响应型实施则优先考虑最大房室同步性。总之,采用速率响应型通信协议可以在不影响房室同步性的情况下显著延长双腔 LLPM 的设备寿命,从而降低设备更换频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
期刊最新文献
CT synthesis with deep learning for MR-only radiotherapy planning: a review. A comprehensive review on Compton camera image reconstruction: from principles to AI innovations. A review of deep learning-based reconstruction methods for accelerated MRI using spatiotemporal and multi-contrast redundancies. Strategies for mitigating inter-crystal scattering effects in positron emission tomography: a comprehensive review. Self-supervised learning for CT image denoising and reconstruction: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1