Deep neural network-based robotic visual servoing for satellite target tracking.

IF 3 Q2 ROBOTICS Frontiers in Robotics and AI Pub Date : 2024-10-08 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1469315
Shayan Ghiasvand, Wen-Fang Xie, Abolfazl Mohebbi
{"title":"Deep neural network-based robotic visual servoing for satellite target tracking.","authors":"Shayan Ghiasvand, Wen-Fang Xie, Abolfazl Mohebbi","doi":"10.3389/frobt.2024.1469315","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the costly and error-prone manual satellite tracking on the International Space Station (ISS), this paper presents a deep neural network (DNN)-based robotic visual servoing solution to the automated tracking operation. This innovative approach directly addresses the critical issue of motion decoupling, which poses a significant challenge in current image moment-based visual servoing. The proposed method uses DNNs to estimate the manipulator's pose, resulting in a significant reduction of coupling effects, which enhances control performance and increases tracking precision. Real-time experimental tests are carried out using a 6-DOF Denso manipulator equipped with an RGB camera and an object, mimicking the targeting pin. The test results demonstrate a 32.04% reduction in pose error and a 21.67% improvement in velocity precision compared to conventional methods. These findings demonstrate that the method has the potential to improve efficiency and accuracy significantly in satellite target tracking and capturing.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1469315"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1469315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the costly and error-prone manual satellite tracking on the International Space Station (ISS), this paper presents a deep neural network (DNN)-based robotic visual servoing solution to the automated tracking operation. This innovative approach directly addresses the critical issue of motion decoupling, which poses a significant challenge in current image moment-based visual servoing. The proposed method uses DNNs to estimate the manipulator's pose, resulting in a significant reduction of coupling effects, which enhances control performance and increases tracking precision. Real-time experimental tests are carried out using a 6-DOF Denso manipulator equipped with an RGB camera and an object, mimicking the targeting pin. The test results demonstrate a 32.04% reduction in pose error and a 21.67% improvement in velocity precision compared to conventional methods. These findings demonstrate that the method has the potential to improve efficiency and accuracy significantly in satellite target tracking and capturing.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的卫星目标跟踪机器人视觉伺服。
针对国际空间站(ISS)上昂贵且容易出错的人工卫星跟踪,本文提出了一种基于深度神经网络(DNN)的机器人视觉伺服解决方案,用于自动跟踪操作。这种创新方法直接解决了运动解耦这一关键问题,而运动解耦是当前基于图像时刻的视觉伺服所面临的重大挑战。所提出的方法使用 DNN 来估计机械手的姿势,从而显著降低了耦合效应,增强了控制性能,提高了跟踪精度。我们使用配备了 RGB 摄像头的 6-DOF Denso 机械手和模仿目标针的物体进行了实时实验测试。测试结果表明,与传统方法相比,姿势误差减少了 32.04%,速度精度提高了 21.67%。这些研究结果表明,该方法有望显著提高卫星目标跟踪和捕获的效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
期刊最新文献
Interactive imitation learning for dexterous robotic manipulation: challenges and perspectives-a survey. Human intention recognition by deep LSTM and transformer networks for real-time human-robot collaboration. From AIBO to robosphere. Organizational interdependencies in sustainable robotics. Slip detection for compliant robotic hands using inertial signals and deep learning. Adaptive mapless mobile robot navigation using deep reinforcement learning based improved TD3 algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1