Zhenjiang Song, Shichao Gao, Mingni Leng, Bo Zhou, Baoshu Wu
{"title":"Quantifying the Ecological Performance of Migratory Bird Conservation: Evidence from Poyang Lake Wetlands in China.","authors":"Zhenjiang Song, Shichao Gao, Mingni Leng, Bo Zhou, Baoshu Wu","doi":"10.3390/biology13100786","DOIUrl":null,"url":null,"abstract":"<p><p>Protected areas are essential for the conservation of biodiversity. However, the rapid expansion of urbanization and the intensification of human activities have significantly disrupted environmental integrity, leading to a continuous deterioration in both the quantity and quality of large ecological patches. This has further diminished the connectivity among ecological patches, leading to significant consequences for regional biodiversity conservation. Taking Poyang Lake as a case study, which serves as a crucial wintering habitat for migratory birds along the East Asia-Australasia flyway, this research employs ArcMap technology. It considers various factors including land use type, slope, and elevation to evaluate habitat quality and degradation through the application of the InVEST model. Additionally, the study utilizes the minimum cumulative resistance (MCR) model alongside circuit theory to delineate ecological corridors within the area and to establish a comprehensive ecological network system. The research results in this paper are as follows. (i) During the period from 2000 to 2020, there was an overall decline in habitat quality within the study area, indicating a clear trend of habitat degradation. However, it is worth noting that there was an increase in habitat quality in certain local areas within the protected area. (ii) The ecological resistance values in the core area of the migratory bird reserve in Poyang Lake are generally low. However, the ecological resistance values of the habitats have shown a consistent increase from 2000 to 2020. Additionally, there has been a significant decrease in the density of ecological corridors during this time period. (iii) Over the period from 2000 to 2020, both the number and connectivity of ecological corridors decreased and their integrity and functionality degraded. Consequently, this weakened role of the ecological network has had implications for maintaining regional biodiversity and ecosystem service functions. The findings indicate two conclusions. (i) Ecological connectivity is essential for the conservation of migratory bird habitats. Strengthening control measures aimed at expanding ecological corridors can effectively safeguard flagship and umbrella species, thereby promoting biodiversity conservation. (ii) The establishment of ecological corridors can help reconcile conflicts between conservation efforts and development objectives. This reconciliation carries significant theoretical implications for fostering a harmonious coexistence between humans and birds in Poyang Lake's migratory bird sanctuary.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505451/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13100786","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protected areas are essential for the conservation of biodiversity. However, the rapid expansion of urbanization and the intensification of human activities have significantly disrupted environmental integrity, leading to a continuous deterioration in both the quantity and quality of large ecological patches. This has further diminished the connectivity among ecological patches, leading to significant consequences for regional biodiversity conservation. Taking Poyang Lake as a case study, which serves as a crucial wintering habitat for migratory birds along the East Asia-Australasia flyway, this research employs ArcMap technology. It considers various factors including land use type, slope, and elevation to evaluate habitat quality and degradation through the application of the InVEST model. Additionally, the study utilizes the minimum cumulative resistance (MCR) model alongside circuit theory to delineate ecological corridors within the area and to establish a comprehensive ecological network system. The research results in this paper are as follows. (i) During the period from 2000 to 2020, there was an overall decline in habitat quality within the study area, indicating a clear trend of habitat degradation. However, it is worth noting that there was an increase in habitat quality in certain local areas within the protected area. (ii) The ecological resistance values in the core area of the migratory bird reserve in Poyang Lake are generally low. However, the ecological resistance values of the habitats have shown a consistent increase from 2000 to 2020. Additionally, there has been a significant decrease in the density of ecological corridors during this time period. (iii) Over the period from 2000 to 2020, both the number and connectivity of ecological corridors decreased and their integrity and functionality degraded. Consequently, this weakened role of the ecological network has had implications for maintaining regional biodiversity and ecosystem service functions. The findings indicate two conclusions. (i) Ecological connectivity is essential for the conservation of migratory bird habitats. Strengthening control measures aimed at expanding ecological corridors can effectively safeguard flagship and umbrella species, thereby promoting biodiversity conservation. (ii) The establishment of ecological corridors can help reconcile conflicts between conservation efforts and development objectives. This reconciliation carries significant theoretical implications for fostering a harmonious coexistence between humans and birds in Poyang Lake's migratory bird sanctuary.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.