Caspase-1 in Cx3cr1-expressing cells drives an IL-18-dependent T cell response that promotes parasite control during acute Toxoplasma gondii infection.
Isaac W Babcock, Lydia A Sibley, Sydney A Labuzan, Maureen N Cowan, Ish Sethi, Seblework Alemu, Abigail G Kelly, Michael A Kovacs, John R Lukens, Tajie H Harris
{"title":"Caspase-1 in Cx3cr1-expressing cells drives an IL-18-dependent T cell response that promotes parasite control during acute Toxoplasma gondii infection.","authors":"Isaac W Babcock, Lydia A Sibley, Sydney A Labuzan, Maureen N Cowan, Ish Sethi, Seblework Alemu, Abigail G Kelly, Michael A Kovacs, John R Lukens, Tajie H Harris","doi":"10.1371/journal.ppat.1012006","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammasome activation is a robust innate immune mechanism that promotes inflammatory responses through the release of alarmins and leaderless cytokines, including IL-1α, IL-1β, and IL-18. Various stimuli, including infectious agents and cellular stress, cause inflammasomes to assemble and activate caspase-1. Then, caspase-1 cleaves targets that lead to pore formation and leaderless cytokine activation and release. Toxoplasma gondii has been shown to promote inflammasome formation, but the cell types utilizing caspase-1 and the downstream effects on immunological outcomes during acute in vivo infection have not been explored. Here, using knockout mice, we examine the role of caspase-1 responses during acute T. gondii infection globally and in Cx3cr1-positive populations. We provide in vivo evidence that caspase-1 expression is critical for, IL-18 release, optimal interferon-γ (IFN-γ) production, monocyte and neutrophil recruitment to the site of infection, and parasite control. Specifically, we find that caspase-1 expression in Cx3cr1-positive cells drives IL-18 release, which potentiates CD4+ T cell IFN-γ production and parasite control. Notably, our Cx3cr1-Casp1 knockouts exhibited a selective T cell defect, mirroring the phenotype observed in Il18 knockouts. In further support of this finding, treatment of Cx3cr1-Casp1 knockout mice with recombinant IL-18 restored CD4+ T cell IFN-γ responses and parasite control. Additionally, we show that neutrophil recruitment is dependent on IL-1 receptor accessory protein (IL-1RAP) signaling but is dispensable for parasite control. Overall, these experiments highlight the multifaceted role of caspase-1 in multiple cell populations contributing to specific pathways that collectively contribute to caspase-1 dependent immunity to T. gondii.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 10","pages":"e1012006"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammasome activation is a robust innate immune mechanism that promotes inflammatory responses through the release of alarmins and leaderless cytokines, including IL-1α, IL-1β, and IL-18. Various stimuli, including infectious agents and cellular stress, cause inflammasomes to assemble and activate caspase-1. Then, caspase-1 cleaves targets that lead to pore formation and leaderless cytokine activation and release. Toxoplasma gondii has been shown to promote inflammasome formation, but the cell types utilizing caspase-1 and the downstream effects on immunological outcomes during acute in vivo infection have not been explored. Here, using knockout mice, we examine the role of caspase-1 responses during acute T. gondii infection globally and in Cx3cr1-positive populations. We provide in vivo evidence that caspase-1 expression is critical for, IL-18 release, optimal interferon-γ (IFN-γ) production, monocyte and neutrophil recruitment to the site of infection, and parasite control. Specifically, we find that caspase-1 expression in Cx3cr1-positive cells drives IL-18 release, which potentiates CD4+ T cell IFN-γ production and parasite control. Notably, our Cx3cr1-Casp1 knockouts exhibited a selective T cell defect, mirroring the phenotype observed in Il18 knockouts. In further support of this finding, treatment of Cx3cr1-Casp1 knockout mice with recombinant IL-18 restored CD4+ T cell IFN-γ responses and parasite control. Additionally, we show that neutrophil recruitment is dependent on IL-1 receptor accessory protein (IL-1RAP) signaling but is dispensable for parasite control. Overall, these experiments highlight the multifaceted role of caspase-1 in multiple cell populations contributing to specific pathways that collectively contribute to caspase-1 dependent immunity to T. gondii.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.