{"title":"MiR-124-3p inhibits cell stemness in glioblastoma via targeting EPHA2 through ALKBH5-mediated m6A modification.","authors":"Maimaitiyiming Tuoheti, Jinxian Li, Cheng Zhang, Feng Gao, Jichao Wang, Yonggang Wu","doi":"10.1007/s13577-024-01129-z","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most aggressive form of glioma, characterized by high mortality and poor prognosis. Dysregulation of microRNAs (miRNAs) plays a critical role in the progression and metastasis of GBM. This study aimed to investigate the role and molecular mechanism of miR-124-3p in GBM. Levels of miR-124-3p, EPHA2, and ALKBH5 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, migration, invasion, and stemness were assessed using the Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and sphere formation assays, respectively. Bioinformatics prediction, dual-luciferase reporter assays, and RNA pull-down experiments were employed to validate the target of miR-124-3p. RNA binding protein immunoprecipitation (RIP) and methylated RNA immunoprecipitation (Me-RIP) were utilized to evaluate the regulation of miR-124-3p maturation by ALKBH5. The results indicated that overexpression of miR-124-3p inhibited the proliferation, migration, invasion, and stemness of GBM cells. EPHA2 was identified as a direct downstream target of miR-124-3p, and its overexpression reversed the inhibitory effects of miR-124-3p on cellular functions. Furthermore, miR-124-3p targeted EPHA2 to inactivate the Wnt/β-catenin pathway. Additionally, ALKBH5 negatively regulated miR-124-3p by impeding its processing. In conclusion, knockdown of ALKBH5 promoted the processing of pri-miR-124-3p, increasing mature miR-124-3p levels, which inhibited the malignant behaviors of GBM cells by targeting EPHA2. These findings highlight the importance of the ALKBH5/miR-124-3p/EPHA2 axis in GBM.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01129-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma, characterized by high mortality and poor prognosis. Dysregulation of microRNAs (miRNAs) plays a critical role in the progression and metastasis of GBM. This study aimed to investigate the role and molecular mechanism of miR-124-3p in GBM. Levels of miR-124-3p, EPHA2, and ALKBH5 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, migration, invasion, and stemness were assessed using the Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and sphere formation assays, respectively. Bioinformatics prediction, dual-luciferase reporter assays, and RNA pull-down experiments were employed to validate the target of miR-124-3p. RNA binding protein immunoprecipitation (RIP) and methylated RNA immunoprecipitation (Me-RIP) were utilized to evaluate the regulation of miR-124-3p maturation by ALKBH5. The results indicated that overexpression of miR-124-3p inhibited the proliferation, migration, invasion, and stemness of GBM cells. EPHA2 was identified as a direct downstream target of miR-124-3p, and its overexpression reversed the inhibitory effects of miR-124-3p on cellular functions. Furthermore, miR-124-3p targeted EPHA2 to inactivate the Wnt/β-catenin pathway. Additionally, ALKBH5 negatively regulated miR-124-3p by impeding its processing. In conclusion, knockdown of ALKBH5 promoted the processing of pri-miR-124-3p, increasing mature miR-124-3p levels, which inhibited the malignant behaviors of GBM cells by targeting EPHA2. These findings highlight the importance of the ALKBH5/miR-124-3p/EPHA2 axis in GBM.