Expanding Insights: Harnessing Expansion Microscopy for Super-Resolution Analysis of HIV-1-Cell Interactions.

IF 3.8 3区 医学 Q2 VIROLOGY Viruses-Basel Pub Date : 2024-10-15 DOI:10.3390/v16101610
Annett Petrich, Gyu Min Hwang, Laetitia La Rocca, Mariam Hassan, Maria Anders-Össwein, Vera Sonntag-Buck, Anke-Mareil Heuser, Vibor Laketa, Barbara Müller, Hans-Georg Kräusslich, Severina Klaus
{"title":"Expanding Insights: Harnessing Expansion Microscopy for Super-Resolution Analysis of HIV-1-Cell Interactions.","authors":"Annett Petrich, Gyu Min Hwang, Laetitia La Rocca, Mariam Hassan, Maria Anders-Össwein, Vera Sonntag-Buck, Anke-Mareil Heuser, Vibor Laketa, Barbara Müller, Hans-Georg Kräusslich, Severina Klaus","doi":"10.3390/v16101610","DOIUrl":null,"url":null,"abstract":"<p><p>Expansion microscopy has recently emerged as an alternative technique for achieving high-resolution imaging of biological structures. Improvements in resolution are achieved by physically expanding samples through embedding in a swellable hydrogel before microscopy. However, expansion microscopy has been rarely used in the field of virology. Here, we evaluate and characterize the ultrastructure expansion microscopy (U-ExM) protocol, which facilitates approximately four-fold sample expansion, enabling the visualization of different post-entry stages of the HIV-1 life cycle, focusing on nuclear events. Our findings demonstrate that U-ExM provides robust sample expansion and preservation across different cell types, including cell-culture-adapted and primary CD4+ T-cells as well as monocyte-derived macrophages, which are known HIV-1 reservoirs. Notably, cellular targets such as nuclear bodies and the chromatin landscape remain well preserved after expansion, allowing for detailed investigation of HIV-1-cell interactions at high resolution. Our data indicate that morphologically distinct HIV-1 capsid assemblies can be differentiated within the nuclei of infected cells and that U-ExM enables detection of targets that are masked in commonly used immunofluorescence protocols. In conclusion, we advocate for U-ExM as a valuable new tool for studying virus-host interactions with enhanced spatial resolution.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"16 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v16101610","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Expansion microscopy has recently emerged as an alternative technique for achieving high-resolution imaging of biological structures. Improvements in resolution are achieved by physically expanding samples through embedding in a swellable hydrogel before microscopy. However, expansion microscopy has been rarely used in the field of virology. Here, we evaluate and characterize the ultrastructure expansion microscopy (U-ExM) protocol, which facilitates approximately four-fold sample expansion, enabling the visualization of different post-entry stages of the HIV-1 life cycle, focusing on nuclear events. Our findings demonstrate that U-ExM provides robust sample expansion and preservation across different cell types, including cell-culture-adapted and primary CD4+ T-cells as well as monocyte-derived macrophages, which are known HIV-1 reservoirs. Notably, cellular targets such as nuclear bodies and the chromatin landscape remain well preserved after expansion, allowing for detailed investigation of HIV-1-cell interactions at high resolution. Our data indicate that morphologically distinct HIV-1 capsid assemblies can be differentiated within the nuclei of infected cells and that U-ExM enables detection of targets that are masked in commonly used immunofluorescence protocols. In conclusion, we advocate for U-ExM as a valuable new tool for studying virus-host interactions with enhanced spatial resolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展洞察力:利用膨胀显微镜对 HIV-1 细胞相互作用进行超分辨率分析。
膨胀显微镜是最近出现的一种实现生物结构高分辨率成像的替代技术。通过在显微镜检查前将样本嵌入可膨胀的水凝胶中,使样本物理膨胀,从而提高分辨率。然而,膨胀显微镜很少用于病毒学领域。在这里,我们对超微结构膨胀显微镜(U-ExM)方案进行了评估和表征,该方案可使样本膨胀约四倍,从而使 HIV-1 生命周期的不同进入后阶段得以可视化,重点是核事件。我们的研究结果表明,U-ExM 能在不同细胞类型中实现稳健的样本扩增和保存,包括细胞培养适应型和原代 CD4+ T 细胞以及单核细胞衍生的巨噬细胞,它们都是已知的 HIV-1 储存库。值得注意的是,细胞靶点(如核体和染色质景观)在扩增后仍然保存完好,从而可以高分辨率地详细研究 HIV-1 细胞间的相互作用。我们的数据表明,在受感染细胞的细胞核内可以分辨出形态各异的 HIV-1 包囊组装体,而且 U-ExM 能够检测常用免疫荧光方案中被掩盖的目标。总之,我们主张将 U-ExM 作为一种有价值的新工具,以更高的空间分辨率研究病毒与宿主的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Viruses-Basel
Viruses-Basel VIROLOGY-
CiteScore
7.30
自引率
12.80%
发文量
2445
审稿时长
1 months
期刊介绍: Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Benchmarking of an Intervention Aiming at the Micro-Elimination of Hepatitis C in Vulnerable Populations in Perpignan, France, to Inform Scale-Up and Elimination on the French Territory. Reexamining the Mycovirome of Botrytis spp. Roles of Macrophages in Viral Infections. Inflammasome-Driven Fatal Acute-on-Chronic Liver Failure Triggered by Mild COVID-19. Insights into Genetic and Antigenic Characteristics of Influenza A(H1N1)pdm09 Viruses Circulating in Sicily During the Surveillance Season 2023-2024: The Potential Effect on the Seasonal Vaccine Effectiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1