Nijing Yang , Hong Peng , Jun Wang , Xiang Lu , Antonio Ramírez-de-Arellano , Xiangxiang Wang , Yongbin Yu
{"title":"Model design and exponential state estimation for discrete-time delayed memristive spiking neural P systems","authors":"Nijing Yang , Hong Peng , Jun Wang , Xiang Lu , Antonio Ramírez-de-Arellano , Xiangxiang Wang , Yongbin Yu","doi":"10.1016/j.neunet.2024.106801","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the exponential state estimation of the discrete-time memristive spiking neural P system (MSNPS). The spiking neural P system (SNPS) offers algorithmic support for neural morphology computation and AI chips, boasting advantages such as high performance and efficiency. As a new type of information device, memristors have efficient computing characteristics that integrate memory and computation, and can serve as synapses in SNPS. Therefore, to leverage the combined benefits of SNPS and memristors, this study introduces an innovative MSNPS circuit design, where memristors substitute resistors in the SNPS framework. Meanwhile, MSNPS mathematical model is constructed based on circuit model. In order to be more practical, the time delays in the system are analyzed in addition to the discretization of the continuous MSNPS. Moreover, some sufficient conditions for exponential state estimation are established by utilizing a Lyapunov functional to MSNPS. Finally, a numerical simulation example is constructed to validate the main findings.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106801"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024007251","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the exponential state estimation of the discrete-time memristive spiking neural P system (MSNPS). The spiking neural P system (SNPS) offers algorithmic support for neural morphology computation and AI chips, boasting advantages such as high performance and efficiency. As a new type of information device, memristors have efficient computing characteristics that integrate memory and computation, and can serve as synapses in SNPS. Therefore, to leverage the combined benefits of SNPS and memristors, this study introduces an innovative MSNPS circuit design, where memristors substitute resistors in the SNPS framework. Meanwhile, MSNPS mathematical model is constructed based on circuit model. In order to be more practical, the time delays in the system are analyzed in addition to the discretization of the continuous MSNPS. Moreover, some sufficient conditions for exponential state estimation are established by utilizing a Lyapunov functional to MSNPS. Finally, a numerical simulation example is constructed to validate the main findings.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.