Ming Ye, Yitong Li, Di Wu, Xifeng Li, Dongjie Bi, Yongle Xie
{"title":"Near-field millimeter-wave and visible image fusion via transfer learning","authors":"Ming Ye, Yitong Li, Di Wu, Xifeng Li, Dongjie Bi, Yongle Xie","doi":"10.1016/j.neunet.2024.106799","DOIUrl":null,"url":null,"abstract":"<div><div>To facilitate penetrating-imaging oriented applications such as nondestructive internal defect detection and localization under obstructed environment, a novel pixel-level information fusion strategy for mmWave and visible images is proposed. More concretely, inspired by both the advancement of deep learning on universal image fusion and the maturity of near-field millimeter wave imaging technology, an effective deep transfer learning strategy is presented to capture the information hidden in visible and millimeter wave images. Furthermore, by implementing fine-tuning strategy and by using an improved bilateral filter, the proposed fusion strategy can robustly exploit the information in both the near-field millimeter wave field and the visual light field. Extensive experiments imply that the proposed strategy can provide superior performance in terms of accuracy and robustness under real-world environment.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106799"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024007238","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To facilitate penetrating-imaging oriented applications such as nondestructive internal defect detection and localization under obstructed environment, a novel pixel-level information fusion strategy for mmWave and visible images is proposed. More concretely, inspired by both the advancement of deep learning on universal image fusion and the maturity of near-field millimeter wave imaging technology, an effective deep transfer learning strategy is presented to capture the information hidden in visible and millimeter wave images. Furthermore, by implementing fine-tuning strategy and by using an improved bilateral filter, the proposed fusion strategy can robustly exploit the information in both the near-field millimeter wave field and the visual light field. Extensive experiments imply that the proposed strategy can provide superior performance in terms of accuracy and robustness under real-world environment.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.