{"title":"Use of machine learning methods in diagnosis of carpal tunnel syndrome.","authors":"Erol Öten, Nilüfer Aygün Bilecik, Levent Uğur","doi":"10.1080/10255842.2024.2417200","DOIUrl":null,"url":null,"abstract":"<p><p>Carpal tunnel syndrome (CTS) is a common condition diagnosed using physical exams and electromyography (EMG) data. This study aimed to classify CTS severity using machine learning techniques. EMG data from 154 patients, including measurements of motor and sensory latency, velocity, and amplitude, were used to form a six-dimensional feature space. Classifiers such as DT, LDA, NB, SVM, k-NN, and ANN were applied, and the feature space was reduced using ANOVA, MRMR, Relieff, and PCA. The DT classifier with ANOVA feature selection showed the best performance for both full and reduced feature spaces.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-11"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2417200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Carpal tunnel syndrome (CTS) is a common condition diagnosed using physical exams and electromyography (EMG) data. This study aimed to classify CTS severity using machine learning techniques. EMG data from 154 patients, including measurements of motor and sensory latency, velocity, and amplitude, were used to form a six-dimensional feature space. Classifiers such as DT, LDA, NB, SVM, k-NN, and ANN were applied, and the feature space was reduced using ANOVA, MRMR, Relieff, and PCA. The DT classifier with ANOVA feature selection showed the best performance for both full and reduced feature spaces.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.