Masoumeh Asadi , Ali Dalir Ghaffari , Fatemeh Mohammadhasani
{"title":"In silico analysis and structural vaccinology prediction of Toxoplasma gondii ROP41 gene via immunoinformatics methods as a vaccine candidate","authors":"Masoumeh Asadi , Ali Dalir Ghaffari , Fatemeh Mohammadhasani","doi":"10.1016/j.retram.2024.103475","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div><em>Toxoplasma gondii</em> (<em>T. gondii</em>) infects all warm-blooded animals, including humans. Currently, no effective treatments exist to prevent the generation of chronic tissue cysts in infected hosts. Therefore, developing a vaccine to protect to deal with toxoplasmosis is a promising strategy, as a single immunization could provide lifelong protective immunity. Rhoptry proteins (ROPs) play a vital role for the parasite's survival within host cells and perform critical functions during different phases of parasite invasion. Little is known about ROP41 gene. Nevertheless, Understanding the characteristics of ROP41 will enhance diagnostic and vaccine research.</div></div><div><h3>Materials and Methods</h3><div>The current article provides a comprehensive analysis of the essential components of the ROP41 protein, including its transmembrane domain, physico-chemical properties, subcellular location, tertiary and secondary structures, and potential T- and B-cell epitopes. These features were determined by many bioinformatics approaches to identify possible epitopes for developing a highly effective vaccine.</div></div><div><h3>Results</h3><div>ROP41 protein showed 36 possible post-translational modification regions. The ROP41 protein secondary structure contains 17.35 % extended strand, 33.47 % alpha-helix, and 49.18 % random coil. Also, ROP41 showed many possible B- and T-cell epitopes. According to the Ramachandran plot, 90.78 % of amino acid residues had been placed in favored, 3.28 % in outlier, and 5.94 % in allowed areas. Also, the allergenicity and antigenicity evaluation indicated that ROP41 is non-allergenic and immunogenic.</div></div><div><h3>Conclusion</h3><div>The current study offered critical basic and conceptual information on ROP41 to increase a successful vaccine in opposition to continual and acute toxoplasmosis for in addition in vivo assessments. Further research is necessary for the development of vaccines utilizing ROP41 alone or combined with various antigens.</div></div>","PeriodicalId":54260,"journal":{"name":"Current Research in Translational Medicine","volume":"73 1","pages":"Article 103475"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452318624000370","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Toxoplasma gondii (T. gondii) infects all warm-blooded animals, including humans. Currently, no effective treatments exist to prevent the generation of chronic tissue cysts in infected hosts. Therefore, developing a vaccine to protect to deal with toxoplasmosis is a promising strategy, as a single immunization could provide lifelong protective immunity. Rhoptry proteins (ROPs) play a vital role for the parasite's survival within host cells and perform critical functions during different phases of parasite invasion. Little is known about ROP41 gene. Nevertheless, Understanding the characteristics of ROP41 will enhance diagnostic and vaccine research.
Materials and Methods
The current article provides a comprehensive analysis of the essential components of the ROP41 protein, including its transmembrane domain, physico-chemical properties, subcellular location, tertiary and secondary structures, and potential T- and B-cell epitopes. These features were determined by many bioinformatics approaches to identify possible epitopes for developing a highly effective vaccine.
Results
ROP41 protein showed 36 possible post-translational modification regions. The ROP41 protein secondary structure contains 17.35 % extended strand, 33.47 % alpha-helix, and 49.18 % random coil. Also, ROP41 showed many possible B- and T-cell epitopes. According to the Ramachandran plot, 90.78 % of amino acid residues had been placed in favored, 3.28 % in outlier, and 5.94 % in allowed areas. Also, the allergenicity and antigenicity evaluation indicated that ROP41 is non-allergenic and immunogenic.
Conclusion
The current study offered critical basic and conceptual information on ROP41 to increase a successful vaccine in opposition to continual and acute toxoplasmosis for in addition in vivo assessments. Further research is necessary for the development of vaccines utilizing ROP41 alone or combined with various antigens.
期刊介绍:
Current Research in Translational Medicine is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of hematology, immunology, infectiology, hematopoietic cell transplantation, and cellular and gene therapy. The journal considers for publication English-language editorials, original articles, reviews, and short reports including case-reports. Contributions are intended to draw attention to experimental medicine and translational research. Current Research in Translational Medicine periodically publishes thematic issues and is indexed in all major international databases (2017 Impact Factor is 1.9).
Core areas covered in Current Research in Translational Medicine are:
Hematology,
Immunology,
Infectiology,
Hematopoietic,
Cell Transplantation,
Cellular and Gene Therapy.