Yan-Chun He, Meng-Qin Wang, Qing-Qing Tie, Xiao-Wen Huang, Yong-Hong Liu, Yun-Qiu Li, Bin Yang
{"title":"Sinulariapeptide F, a new peptide from culture broth of marine-derived fungus Simplicillium sp. SCSIO 41222.","authors":"Yan-Chun He, Meng-Qin Wang, Qing-Qing Tie, Xiao-Wen Huang, Yong-Hong Liu, Yun-Qiu Li, Bin Yang","doi":"10.1038/s41429-024-00780-w","DOIUrl":null,"url":null,"abstract":"<p><p>One new compound named sinulariapeptide F (1) together with one known butyrolactone (2) and seven known peptides (3-9) were isolated from the fungus Simplicillium sp. SCSIO 41222. Their structures and absolute configurations were established using HRESIMS, NMR spectroscopy (<sup>1</sup>H, <sup>13</sup>C, HSQC, HMBC) and marfey's method. All of these compounds were assessed their inhibitory activity of acetylcholinesterase (AChE) and pancreatic lipase (PL). Compounds 4 and 6 were selected to test for the inhibitory activity against programmed cell death-1 (PD-1)/ programmed cell death-ligand 1 (PD-L1). The results indicated that compound 4 displayed potent inhibition activity against PD-1/ PD-L1 with an IC<sub>50</sub> value of 0.656 μM. Furthermore, the docking analysis demonstrated the interactions between 4 and proteins, suggesting PD-L1 to be a probable target for compound 4.</p>","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41429-024-00780-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One new compound named sinulariapeptide F (1) together with one known butyrolactone (2) and seven known peptides (3-9) were isolated from the fungus Simplicillium sp. SCSIO 41222. Their structures and absolute configurations were established using HRESIMS, NMR spectroscopy (1H, 13C, HSQC, HMBC) and marfey's method. All of these compounds were assessed their inhibitory activity of acetylcholinesterase (AChE) and pancreatic lipase (PL). Compounds 4 and 6 were selected to test for the inhibitory activity against programmed cell death-1 (PD-1)/ programmed cell death-ligand 1 (PD-L1). The results indicated that compound 4 displayed potent inhibition activity against PD-1/ PD-L1 with an IC50 value of 0.656 μM. Furthermore, the docking analysis demonstrated the interactions between 4 and proteins, suggesting PD-L1 to be a probable target for compound 4.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.