Miguel Ángel Gracia-Pinilla, Norma Alicia Ramos-Delgado, Cristian Rosero-Arias, Remco Sanders, Stephan Bartling, Jędrzej Winczewski, Han Gardeniers, Arturo Susarrey-Arce
{"title":"Additive manufacturing of hollow connected networks for solar photo-Fenton-like catalysis.","authors":"Miguel Ángel Gracia-Pinilla, Norma Alicia Ramos-Delgado, Cristian Rosero-Arias, Remco Sanders, Stephan Bartling, Jędrzej Winczewski, Han Gardeniers, Arturo Susarrey-Arce","doi":"10.1039/d4su00312h","DOIUrl":null,"url":null,"abstract":"<p><p>A 3D-printing approach is used to fabricate green bodies/precursor microarchitectures that, upon annealing, allow the fabrication of hierarchical 3D hollow microarchitectures (3DHMs). The 3DHMs are composed mainly of TiO<sub>2</sub> and inorganic stabilizers that enable the production of inorganic cellular units upon thermal annealing at 650 °C. Morphological inspection reveals that the 3D architecture beams comprise TiO<sub>2</sub> nanoparticles (NPs). The inner and outer diameters of the hollow beams are ∼80 μm and ∼150 μm, retained throughout the 3D hollow network. A proof-of-concept photo-Fenton reaction is assessed. The 3DHMs are impregnated with α-Fe<sub>2</sub>O<sub>3</sub> NPs to evaluate solar photo-Fenton degradation of organic compounds, such as MB used as control and acetaminophen, an organic pollutant. The optical, structural, and chemical environment characteristics, alongside scavenger analysis, generate insights into the proposed solar photo-Fenton degradation reaction over TiO<sub>2</sub> 3DHMs loaded with α-Fe<sub>2</sub>O<sub>3</sub>. Our work demonstrates newly hollow printed microarchitecture with interconnected networks, which can help direct catalytic reactions.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492987/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4su00312h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A 3D-printing approach is used to fabricate green bodies/precursor microarchitectures that, upon annealing, allow the fabrication of hierarchical 3D hollow microarchitectures (3DHMs). The 3DHMs are composed mainly of TiO2 and inorganic stabilizers that enable the production of inorganic cellular units upon thermal annealing at 650 °C. Morphological inspection reveals that the 3D architecture beams comprise TiO2 nanoparticles (NPs). The inner and outer diameters of the hollow beams are ∼80 μm and ∼150 μm, retained throughout the 3D hollow network. A proof-of-concept photo-Fenton reaction is assessed. The 3DHMs are impregnated with α-Fe2O3 NPs to evaluate solar photo-Fenton degradation of organic compounds, such as MB used as control and acetaminophen, an organic pollutant. The optical, structural, and chemical environment characteristics, alongside scavenger analysis, generate insights into the proposed solar photo-Fenton degradation reaction over TiO2 3DHMs loaded with α-Fe2O3. Our work demonstrates newly hollow printed microarchitecture with interconnected networks, which can help direct catalytic reactions.