Spatial dimension cues derived from fibrous scaffolds trigger mechanical activation to potentiate the paracrine and regenerative functions of MSCs via the FAK-PI3K/AKT axis
{"title":"Spatial dimension cues derived from fibrous scaffolds trigger mechanical activation to potentiate the paracrine and regenerative functions of MSCs via the FAK-PI3K/AKT axis","authors":"Shixin Xu, Miaomiao Zhang, Ruoying Wang, Jinxin Zhang, Chengwei Wang, Li Xie, Wen Zhao","doi":"10.1016/j.actbio.2024.10.039","DOIUrl":null,"url":null,"abstract":"<div><div>Secretomes from mesenchymal stem cells (MSCs) have significant therapeutic potential and could be the basis for future MSCs treatments. Innovative design of the topology of biomaterials, which mechanically regulate cell behavior and function, can tremendously improve the efficacy of stem cell therapy. However, how spatial dimension cues derived from specific topology command cell mechanotransduction to regulate the paracrine function of MSCs remains unknown. In this study, the three-dimensional (3D) fibrous constructs with box-like pores and precise strand spacing from 150 µm down to only 40 µm were manufactured using melt electrowriting (MEW), which were used to systematically investigate the spatial dimension cues-triggered mechanotransduction of adipose-derived mesenchymal stem cells (Ad-MSCs) and their impact on the paracrine and regeneration function of Ad-MSCs. The results demonstrated that spatial instructions from the 3D fibrous constructs could influence the spatial reorganization of the cytoskeleton, resulting in cell elongation and augmented immunomodulatory and angiogenic paracrine effects of Ad-MSCs, which was most pronounced at a minimum strand spacing of 40 µm. Besides, mechanical activation of the FAK-PI3K/AKT axis significantly enhanced the paracrine function of Ad-MSCs. <em>In vivo</em> experiments demonstrated that the Ad-MSCs trained using well-defined 3D fibrous constructs with a strand spacing of 40 µm significantly promoted skin regeneration via paracrine signals. In conclusion, this study provides a new horizon for deciphering space dimension insights into the interactional mechanisms of mechanotransduction in regulating cell function, which has inspired innovations in biomaterials for improving tissue regeneration.</div></div><div><h3>Statement of significance</h3><div>This study emphasized that designing cell-scale spatial dimension cues to command mechanical activation via the FAK-PI3K/AKT axis could significantly enhance the paracrine and regenerative functions of Ad-MSCs. Paracrine signals of Ad-MSCs triggered by mechanical activation promoted skin repair and regeneration via the immunomodulation and angiogenesis. The proposed mechanobiological signal transduction triggered by spatial dimensional cues, which potentiates the paracrine and regenerative functions of Ad-MSCs, is a promising engineering strategy and is expected to provide new inspirations for the development of biomaterials based on biophysical signals for cellular behavior modulation.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"190 ","pages":"Pages 273-292"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124006317","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Secretomes from mesenchymal stem cells (MSCs) have significant therapeutic potential and could be the basis for future MSCs treatments. Innovative design of the topology of biomaterials, which mechanically regulate cell behavior and function, can tremendously improve the efficacy of stem cell therapy. However, how spatial dimension cues derived from specific topology command cell mechanotransduction to regulate the paracrine function of MSCs remains unknown. In this study, the three-dimensional (3D) fibrous constructs with box-like pores and precise strand spacing from 150 µm down to only 40 µm were manufactured using melt electrowriting (MEW), which were used to systematically investigate the spatial dimension cues-triggered mechanotransduction of adipose-derived mesenchymal stem cells (Ad-MSCs) and their impact on the paracrine and regeneration function of Ad-MSCs. The results demonstrated that spatial instructions from the 3D fibrous constructs could influence the spatial reorganization of the cytoskeleton, resulting in cell elongation and augmented immunomodulatory and angiogenic paracrine effects of Ad-MSCs, which was most pronounced at a minimum strand spacing of 40 µm. Besides, mechanical activation of the FAK-PI3K/AKT axis significantly enhanced the paracrine function of Ad-MSCs. In vivo experiments demonstrated that the Ad-MSCs trained using well-defined 3D fibrous constructs with a strand spacing of 40 µm significantly promoted skin regeneration via paracrine signals. In conclusion, this study provides a new horizon for deciphering space dimension insights into the interactional mechanisms of mechanotransduction in regulating cell function, which has inspired innovations in biomaterials for improving tissue regeneration.
Statement of significance
This study emphasized that designing cell-scale spatial dimension cues to command mechanical activation via the FAK-PI3K/AKT axis could significantly enhance the paracrine and regenerative functions of Ad-MSCs. Paracrine signals of Ad-MSCs triggered by mechanical activation promoted skin repair and regeneration via the immunomodulation and angiogenesis. The proposed mechanobiological signal transduction triggered by spatial dimensional cues, which potentiates the paracrine and regenerative functions of Ad-MSCs, is a promising engineering strategy and is expected to provide new inspirations for the development of biomaterials based on biophysical signals for cellular behavior modulation.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.